101,863 research outputs found
A complement to Le Cam's theorem
This paper examines asymptotic equivalence in the sense of Le Cam between
density estimation experiments and the accompanying Poisson experiments. The
significance of asymptotic equivalence is that all asymptotically optimal
statistical procedures can be carried over from one experiment to the other.
The equivalence given here is established under a weak assumption on the
parameter space . In particular, a sharp Besov smoothness
condition is given on which is sufficient for Poissonization,
namely, if is in a Besov ball with . Examples show Poissonization is not possible whenever .
In addition, asymptotic equivalence of the density estimation model and the
accompanying Poisson experiment is established for all compact subsets of
, a condition which includes all H\"{o}lder balls with smoothness
.Comment: Published at http://dx.doi.org/10.1214/009053607000000091 in the
Annals of Statistics (http://www.imstat.org/aos/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Acetylation of BMAL1 by TIP60 controls BRD4-P-TEFb recruitment to circadian promoters.
Many physiological processes exhibit circadian rhythms driven by cellular clocks composed of interlinked activating and repressing elements. To investigate temporal regulation in this molecular oscillator, we combined mouse genetic approaches and analyses of interactions of key circadian proteins with each other and with clock gene promoters. We show that transcriptional activators control BRD4-PTEFb recruitment to E-box-containing circadian promoters. During the activating phase of the circadian cycle, the lysine acetyltransferase TIP60 acetylates the transcriptional activator BMAL1 leading to recruitment of BRD4 and the pause release factor P-TEFb, followed by productive elongation of circadian transcripts. We propose that the control of BRD4-P-TEFb recruitment is a novel temporal checkpoint in the circadian clock cycle
Electronic, dynamical, and thermal properties of ultra-incompressible superhard rhenium diboride: A combined first-principles and neutron scattering study
Rhenium diboride is a recently recognized ultra-incompressible superhard
material. Here we report the electronic (e), phonon (p), e-p coupling and
thermal properties of ReB from first-principles density-functional theory
(DFT) calculations and neutron scattering measurements. Our calculated elastic
constants ( = 641 GPa, = 159 GPa, = 128 GPa,
= 1037 GPa, and = 271 GPa), bulk modulus ( 350 GPa) and
hardness ( 46 GPa) are in good agreement with the reported
experimental data. The calculated phonon density of states (DOS) agrees very
well with our neutron vibrational spectroscopy result. Electronic and phonon
analysis indicates that the strong covalent B-B and Re-B bonding is the main
reason for the super incompressibility and hardness of ReB. The thermal
expansion coefficients, calculated within the quasi-harmonic approximation and
measured by neutron powder diffraction, are found to be nearly isotropic in
and directions and only slightly larger than that of diamond in terms of
magnitude. The excellent agreement found between calculations and experimental
measurements indicate that first-principles calculations capture the main
interactions in this class of superhard materials, and thus can be used to
search, predict, and design new materials with desired properties.Comment: submitted to pr
Ground-state configuration space heterogeneity of random finite-connectivity spin glasses and random constraint satisfaction problems
We demonstrate through two case studies, one on the p-spin interaction model
and the other on the random K-satisfiability problem, that a heterogeneity
transition occurs to the ground-state configuration space of a random
finite-connectivity spin glass system at certain critical value of the
constraint density. At the transition point, exponentially many configuration
communities emerge from the ground-state configuration space, making the
entropy density s(q) of configuration-pairs a non-concave function of
configuration-pair overlap q. Each configuration community is a collection of
relatively similar configurations and it forms a stable thermodynamic phase in
the presence of a suitable external field. We calculate s(q) by the
replica-symmetric and the first-step replica-symmetry-broken cavity methods,
and show by simulations that the configuration space heterogeneity leads to
dynamical heterogeneity of particle diffusion processes because of the entropic
trapping effect of configuration communities. This work clarifies the fine
structure of the ground-state configuration space of random spin glass models,
it also sheds light on the glassy behavior of hard-sphere colloidal systems at
relatively high particle volume fraction.Comment: 26 pages, 9 figures, submitted to Journal of Statistical Mechanic
The upper-atmosphere extension of the ICON general circulation model (version: Ua-icon-1.0)
How the upper-atmosphere branch of the circulation contributes to and interacts with the circulation of the middle and lower atmosphere is a research area with many open questions. Inertia-gravity waves, for instance, have moved in the focus of research as they are suspected to be key features in driving and shaping the circulation. Numerical atmospheric models are an important pillar for this research. We use the ICOsahedral Non-hydrostatic (ICON) general circulation model, which is a joint development of the Max Planck Institute for Meteorology (MPI-M) and the German Weather Service (DWD), and provides, e.g., local mass conservation, a flexible grid nesting option, and a non-hydrostatic dynamical core formulated on an icosahedral-triangular grid. We extended ICON to the upper atmosphere and present here the two main components of this new configuration named UA-ICON: an extension of the dynamical core from shallow- to deep-atmosphere dynamics and the implementation of an upper-atmosphere physics package. A series of idealized test cases and climatological simulations is performed in order to evaluate the upper-atmosphere extension of ICON. © Author(s) 2019
Casimir pistons with hybrid boundary conditions
The Casimir effect giving rise to an attractive or repulsive force between
the configuration boundaries that confine the massless scalar field is
reexamined for one to three-dimensional pistons in this paper. Especially, we
consider Casimir pistons with hybrid boundary conditions, where the boundary
condition on the piston is Neumann and those on other surfaces are Dirichlet.
We show that the Casimir force on the piston is always repulsive, in contrast
with the same problem where the boundary conditions are Dirichlet on all
surfaces.Comment: 8 pages, 4 figures,references added, minor typos correcte
An effective ant-colony based routing algorithm for mobile ad-hoc network
An effective Ant-Colony based routing algorithm for mobile ad-hoc network is proposed in this paper. In this routing scheme, each path is marked by path grade, which is calculated from the combination of multiple constrained QoS parameters such as the time delay, packet loss rate and bandwidth, etc. packet routing is decided by the path grade and the queue buffer length of the node. The advantage of this scheme is that it can effectively improve the packet delivery ratio and reduce the end-to-end delay. The simulation results show that our proposed algorithm can improve the packet delivery ratio by 9%-22% and the end-to-end delay can be reduced by 14%-16% as compared with the conventional QAODV and ARA routing schemes
- …