3 research outputs found

    Research on Protection Scheme of DC Microgrid Integrated with Fault Current Limiting Control Technology

    Get PDF
    [Introduction] With the development of new loads, such as distributed power sources and electric vehicles, DC(Direct Current) microgrids have the advantages of fewer commutation links and lower system losses than AC(Alternating Current) microgrids, and have become the current research hotspot. Due to the small coverage of the DC microgrid and access to a large amount of distributed power sources, the fault current rises quickly with a large amplitude when inter-pole short-circuit fault occurs, making it difficult to achieve differential coordination with traditional overcurrent protection used in AC distribution networks and posing a great challenge to fault localization. [Method] Therefore, in response to the characteristics of fault current in DC microgrids, the method for designing overcurrent protection setting value based on the precise control value of fault current through the integration of current limiting and protection was proposed. Combined with the reasonable capacity design of each branch, it can easily achieve differential coordination and accurately locate faults. [Result] A corresponding DC microgrid model is built on the PSCAD/EMTDC simulation platform. The proposed protection scheme is simulated and verified, and the result shows that the scheme can correctly locate the fault point and quickly remove the fault. [Conclusion] The proposed protection scheme can ensure the selectivity of overcurrent, which verifies the rationality of the scheme

    Mineralogical, Geochronological, and Geochemical Characteristics of Early Cretaceous Granite in South China: Implications for Tectonic Evolution and REE Mineralization

    Full text link
    One of the most important geological features of South China are the widespread Mesozoic igneous rocks that play a key role in revealing the tectonic evolution of South China. Due to the thick covering of vegetation and Quaternary sediments, the early Cretaceous magmatism in southwestern South China is still not well constrained. In this paper, we report newly identified early Cretaceous granites in Guangxi, South China. Zircon U–Pb dating results showed that representative fine-grained and coarse-grained granites in northeastern Guangxi indicate the early Cretaceous ages of 141 ± 3 Ma and 141 ± 4 Ma, respectively. Geochemically, both fine-grained and coarse-grained granites had high 10,000 × Ga/Al ratios and belonged to A-type granite. They had undergone high degrees of magma differentiation, as evidenced by extremely negative Sr, Ba, and Eu anomalies. They had high REE (rare earth elements) contents (>451 ppm). The fine-grained granites were characterized by higher HREE (heavy rare earth elements) contents, lower LREE (light rare earth elements) contents, and lower LREE/HREE ratios than the coarse-grained granites. Integrated with regional geological data, the early Cretaceous granites were likely formed in a back-arc extensional environment in response to the increased subduction angle of the Paleo-Pacific plate. Different REE contents in the fine- and coarse-grained granites may be a result of fractional crystallization. Magma differentiation and hydrothermal alteration might have played an important role in REE mineralization of the early Cretaceous granites in Guangxi
    corecore