93 research outputs found

    Exploiting Summarization Data to Help Text Simplification

    Full text link
    One of the major problems with text simplification is the lack of high-quality data. The sources of simplification datasets are limited to Wikipedia and Newsela, restricting further development of this field. In this paper, we analyzed the similarity between text summarization and text simplification and exploited summarization data to help simplify. First, we proposed an alignment algorithm to extract sentence pairs from summarization datasets. Then, we designed four attributes to characterize the degree of simplification and proposed a method to filter suitable pairs. We named these pairs Sum4Simp (S4S). Next, we conducted human evaluations to show that S4S is high-quality and compared it with a real simplification dataset. Finally, we conducted experiments to illustrate that the S4S can improve the performance of several mainstream simplification models, especially in low-resource scenarios.Comment: 13 pages, 4 figures, EACL 202

    DiffLoad: Uncertainty Quantification in Load Forecasting with Diffusion Model

    Full text link
    Electrical load forecasting is of great significance for the decision makings in power systems, such as unit commitment and energy management. In recent years, various self-supervised neural network-based methods have been applied to electrical load forecasting to improve forecasting accuracy and capture uncertainties. However, most current methods are based on Gaussian likelihood methods, which aim to accurately estimate the distribution expectation under a given covariate. This kind of approach is difficult to adapt to situations where temporal data has a distribution shift and outliers. In this paper, we propose a diffusion-based Seq2seq structure to estimate epistemic uncertainty and use the robust additive Cauchy distribution to estimate aleatoric uncertainty. Rather than accurately forecasting conditional expectations, we demonstrate our method's ability in separating two types of uncertainties and dealing with the mutant scenarios

    Prognostic nomogram for bladder cancer with brain metastases: a National Cancer Database analysis.

    Get PDF
    BACKGROUND: This study aimed to establish and validate a nomogram for predicting brain metastasis in patients with bladder cancer (BCa) and assess various treatment modalities using a primary cohort comprising 234 patients with clinicopathologically-confirmed BCa from 2004 to 2015 in the National Cancer Database. METHODS: Machine learning method and Cox model were used for nomogram construction. For BCa patients with brain metastasis, surgery of the primary site, chemotherapy, radiation therapy, palliative care, brain confinement of metastatic sites, and the Charlson/Deyo Score were predictive features identified for building the nomogram. RESULTS: For the original 169 patients considered in the model, the areas under the receiver operating characteristic curve (AUC) were 0.823 (95% CI 0.758-0.889, P \u3c 0.001) and 0.854 (95% CI 0.785-0.924, P \u3c 0.001) for 0.5- and 1-year overall survival respectively. In the validation cohort, the nomogram displayed similar AUCs of 0.838 (95% CI 0.738-0.937, P \u3c 0.001) and 0.809 (95% CI 0.680-0.939, P \u3c 0.001), respectively. The high and low risk groups had median survivals of 1.91 and 5.09 months for the training cohort and 1.68 and 8.05 months for the validation set, respectively (both P \u3c 0.0001). CONCLUSIONS: Our prognostic nomogram provides a useful tool for overall survival prediction as well as assessing the risk and optimal treatment for BCa patients with brain metastasis

    Benchmarks and Custom Package for Electrical Load Forecasting

    Full text link
    Load forecasting is of great significance in the power industry as it can provide a reference for subsequent tasks such as power grid dispatch, thus bringing huge economic benefits. However, there are many differences between load forecasting and traditional time series forecasting. On the one hand, load forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch, rather than simply pursuing prediction accuracy. On the other hand, the load is largely influenced by many external factors, such as temperature or calendar variables. In addition, the scale of predictions (such as building-level loads and aggregated-level loads) can also significantly impact the predicted results. In this paper, we provide a comprehensive load forecasting archive, which includes load domain-specific feature engineering to help forecasting models better model load data. In addition, different from the traditional loss function which only aims for accuracy, we also provide a method to customize the loss function based on the forecasting error, integrating it into our forecasting framework. Based on this, we conducted extensive experiments on load data at different levels, providing a reference for researchers to compare different load forecasting models

    Identification of human fetal liver miRNAs by a novel method

    Get PDF
    AbstractMicroRNAs (miRNAs) are short 20–25 nucleotides RNA molecules that have been shown to regulate gene expressions in a variety of eukaryotic systems. miRNAs are widespread in eukaryotes and several hundred of miRNAs have been identified, but still a lot of miRNAs have not been detected in various eukaryotic organisms. However, it is not an easy work to clone miRNAs by traditional methods. Here, we describe the identification of 27 miRNAs from a human fetal liver cDNA library by a novel cloning method. Low molecular weight RNA fraction (⩽200nt) from fetal liver tissue was extracted, and polyadenylated by poly(A) polymerase. A 5′ RNA adaptor was ligated to poly(A)-tailed RNA using T4 RNA ligase. After reverse transcription, the cDNA was amplified by PCR with two adaptor primers. The PCR product with a size about 109bp was recovered and cloned into T vector. After sequencing, database searching, and expression profiling, 5 novel miRNAs were discovered among other 22 known miRNAs in human fetal liver. These finding indicate that a large diverse population of miRNAs may function to regulate gene expression in hepatocyte

    Transcription and splicing regulation in human umbilical vein endothelial cells under hypoxic stress conditions by exon array

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The balance between endothelial cell survival and apoptosis during stress is an important cellular process for vessel integrity and vascular homeostasis, and it is also pivotal in angiogenesis during the development of many vascular diseases. However, the underlying molecular mechanisms remain largely unknown. Although both transcription and alternative splicing are important in regulating gene expression in endothelial cells under stress, the regulatory mechanisms underlying this state and their interactions have not yet been studied on a genome-wide basis.</p> <p>Results</p> <p>Human umbilical vein endothelial cells (HUVECs) were treated with cobalt chloride (CoCl<sub>2</sub>) both to mimic hypoxia and to induce cell apoptosis and alternative splicing responses. Cell apoptosis rate analysis indicated that HUVECs exposed to 300 μM CoCl<sub>2 </sub>for 24 hrs were initially counterbalancing apoptosis with cell survival. We therefore used the Affymetrix exon array system to determine genome-wide transcript- and exon-level differential expression. Other than 1583 differentially expressed transcripts, 342 alternatively spliced exons were detected and classified by different splicing types. Sixteen alternatively spliced exons were validated by RT-PCR. Furthermore, direct evidence for the ongoing balance between HUVEC survival and apoptosis was provided by Gene Ontology (GO) and protein function, as well as protein domain and pathway enrichment analyses of the differentially expressed transcripts. Importantly, a novel molecular module, in which the heat shock protein (HSP) families play a significant role, was found to be activated under mimicked hypoxia conditions. In addition, 46% of the transcripts containing stress-modulated exons were differentially expressed, indicating the possibility of combinatorial regulation of transcription and splicing.</p> <p>Conclusion</p> <p>The exon array system effectively profiles gene expression and splicing on the genome-wide scale. Based on this approach, our data suggest that transcription and splicing not only regulate gene expression, but also carry out combinational regulation of the balance between survival and apoptosis of HUVECs under mimicked hypoxia conditions. Since cell survival following the apoptotic challenge is pivotal in angiogenesis during the development of many vascular diseases, our results may advance the knowledge of multilevel gene regulation in endothelial cells under physiological and pathological conditions.</p

    Acute myocardial infarction after inactivated COVID-19 vaccination: a case report and literature review

    Get PDF
    A number of vaccines have been developed and deployed globally to restrain the spreading of the coronavirus disease 2019 (COVID-19). The adverse effect following vaccination is an important consideration. Acute myocardial infarction (AMI) is a kind of rare adverse event after COVID-19 vaccination. Herein, we present a case of an 83-year-old male who suffered cold sweat ten minutes after the first inactivated COVID-19 vaccination and AMI one day later. The emergency coronary angiography showed coronary thrombosis and underlying stenosis in his coronary artery. Type II Kounis syndrome might be a potential mechanism, which is manifested as coronary thrombosis secondary to allergic reactions in patients with underlying asymptomatic coronary heart disease. We also summarize the reported AMI cases post COVID-19 vaccination, as well as overview and discuss the proposed mechanisms of AMI after COVID-19 vaccination, thus providing insights for clinicians to be aware of the possibility of AMI following COVID-19 vaccination and potential underlying mechanisms

    Selection of Diethylstilbestrol-Specific Single-Chain Antibodies from a Non-Immunized Mouse Ribosome Display Library

    Get PDF
    Single chain variable fragments (scFvs) against diethylstilbestrol (DES) were selected from the splenocytes of non-immunized mice by ribosome display technology. A naive library was constructed and engineered to allow in vitro transcription and translation using an E. coli lysate system. Alternating selection in solution and immobilization in microtiter wells was used to pan mRNA-ribosome-antibody (ARM) complexes. After seven rounds of ribosome display, the expression vector pTIG-TRX containing the selected specific scFv DNAs were transformed into Escherichia coli BL21 (DE3) for expression. Twenty-six positive clones were screened and five clones had high antibody affinity and specificity to DES as evidenced by indirect competitive ELISA. Sequence analysis showed that these five DES-specific scFvs had different amino acid sequences, but the CDRs were highly similar. Surface plasmon resonance (SPR) analysis was used to determine binding kinetics of one clone (30-1). The measured KD was 3.79 µM. These results indicate that ribosome display technology can be used to efficiently isolate hapten-specific antibody (Ab) fragments from a naive library; this study provides a methodological framework for the development of novel immunoassays for multiple environmental pollutants with low molecular weight detection using recombinant antibodies
    • …
    corecore