14 research outputs found

    Visualization 3: Light-driven crystallization of polystyrene micro-spheres

    Full text link
    Movie 3. 3umPS-2d Originally published in Photonics Research on 01 June 2017 (prj-5-3-201

    Visualization 1: Light-driven crystallization of polystyrene micro-spheres

    Full text link
    Movie 1. 3umPS-1d Originally published in Photonics Research on 01 June 2017 (prj-5-3-201

    Visualization 2: Light-driven crystallization of polystyrene micro-spheres

    Full text link
    Movie 2. 3umPS-1d-2d-transformation Originally published in Photonics Research on 01 June 2017 (prj-5-3-201

    All-Optical Modulation of a Graphene-Cladded Silicon Photonic Crystal Cavity

    Full text link
    The combination of graphene and a silicon photonic crystal cavity provides an ideal structure for realizing sensitive all-optical modulation. In this paper, an all-optical tuning of a graphene-cladded photonic crystal cavity is demonstrated. A 3.5 nm resonance wavelength shift and a 20% quality factor change are observed as a 1064 nm continuous-wave control laser is focused on the cavity. The resonance wavelength shift is nearly 2 times that realized with electrical modulation and can be further improved with increasing laser power. Meanwhile, it is found that the laser power to reach the saturation absorption state of graphene is nearly 2 orders of magnitude lower than that for monolayer graphene on silica. The experimental results are attributed to optically induced transparency and hot carrier effects. This study opens up a promising way to construct a sensitive all-optical modulator, which is a necessary device in an all-optical integrated circuit, by using a graphene-cladded photonic crystal cavity

    DataSheet_1_Incidence, associated factors, and outcomes of acute kidney injury following placement of antibiotic bone cement spacers in two-stage exchange for periprosthetic joint infection: a comprehensive study.docx

    Full text link
    BackgroundTwo-stage exchange with placement of antibiotic cement spacer (ACS) is the gold standard for the treatment of chronic periprosthetic joint infection (PJI), but it could cause a high prevalence of acute kidney injury (AKI). However, the results of the current evidence on this topic are too mixed to effectively guide clinical practice.MethodsWe retrospectively identified 340 chronic PJI patients who underwent the first-stage exchange with placement of ACS. The Kidney Disease Improving Global Outcomes guideline was used to define postoperative AKI. Multivariate logistic analysis was performed to determine the potential factors associated with AKI. Furthermore, a systematic review and meta-analysis on this topic were conducted to summarize the knowledge in the current literature further.ResultsIn our cohort, the incidence of AKI following first-stage exchange was 12.1%. Older age (per 10 years, OR= 1.509) and preoperative hypoalbuminemia (OR= 3.593) were independent predictors for postoperative AKI. Eight AKI patients progressed to chronic kidney disease after 90 days. A meta-analysis including a total of 2525 PJI patients showed the incidence of AKI was 16.6%, and AKI requiring acute dialysis was 1.4%. Besides, host characteristics, poor baseline liver function, factors contributing to acute renal blood flow injury, and the use of nephrotoxic drugs may be associated with the development of AKI. However, only a few studies supported an association between antibiotic dose and AKI.ConclusionAKI occurs in approximately one out of every six PJI patients undergoing first-stage exchange. The pathogenesis of AKI is multifactorial, with hypoalbuminemia could be an overlooked associated factor. Although the need for acute dialysis is uncommon, the fact that some AKI patients will develop CKD still needs to be taken into consideration.</p

    A Simple-Structured Perovskite Wavelength Sensor for Full-Color Imaging Application

    Full text link
    In this study, simple-structured wavelength sensors were developed by depositing two back-to-back Au/MAPbI3/Au photodetectors on an MAPbI3 single crystal. This sensor could quantitatively distinguish wavelengths. Further device analysis showed that both photodetectors possess entirely disparate optoelectronic properties. Consequently, the as-developed wavelength sensor could accurately distinguish incident-light wavelengths ranging from 265 to 860 nm with a resolution of less than 1.5 nm based on the relation between the photocurrent ratios of both photodetectors and the incident light wavelengths. Notably, a high resolution and wide detection range are among the optimum reported values for such sensors and enable full-color imaging. Furthermore, technology computer-aided design (TCAD) simulations showed that a mechanism involved in distinguishing wavelengths is attributed to the wavelength-dependent photon generation rate in MAPbI3 single crystals. The high-performance MAPbI3 wavelength sensor can potentially drive the research progress of perovskites in wavelength recognition and full-color imaging

    Integration of Kinetic Control and Lattice Mismatch To Synthesize Pd@AuCu Core–Shell Planar Tetrapods with Size-Dependent Optical Properties

    Full text link
    Planar nanocrystals with multiple branches exhibit unique localized surface plasmon resonance properties and great promise in optical applications. Here, we report an aqueous synthesis of Pd@AuCu core–shell planar tetrapods through preferential overgrowth on Pd cubic seeds. The large lattice mismatch between the Pd core and the AuCu shell is the key to induce the formation of branches under sluggish reduction kinetics. Meanwhile, the capping effect of cetyltrimethylammonium chloride on the {100} facets of Pd cubes with an aspect ratio of 1.2 can determine the growth direction of AuCu branches to form a planar structure. Through simply varying the amounts of Pd cubic seeds, the sizes of products can be well-controlled in the range from 33 to 70 nm. With the manipulation of sizes, the peak position of in-plane dipole resonance can be adjusted from visible to near-infrared region. Due to the presence of tips and edges in the branches, planar tetrapods exhibited excellent surface-enhanced Raman scattering performance with an enhancement factor up to 9.0 × 10<sup>3</sup> for 70 nm Pd@AuCu planar tetrapods
    corecore