272 research outputs found

    The dynamical fate of planetary systems in young star clusters

    Full text link
    We carry out N-body simulations to examine the effects of dynamical interactions on planetary systems in young open star clusters. We explore how the planetary populations in these star clusters evolve, and how this evolution depends on the initial amount of substructure, the virial ratio, the cluster mass and density, and the initial semi-major axis of the planetary systems. The fraction of planetary systems that remains intact as a cluster member, fbps, is generally well-described by the functional form fbps=f0(1+[a/a0]^c)^-1, where (1-f0) is the fraction of stars that escapes from the cluster, a0 the critical semi-major axis for survival, and c a measure for the width of the transition region. The effect of the initial amount of substructure over time can be quantified as fbps=A(t)+B(D), where A(t) decreases nearly linearly with time, and B(D) decreases when the clusters are initially more substructured. Provided that the orbital separation of planetary systems is smaller than the critical value a0, those in clusters with a higher initial stellar density (but identical mass) have a larger probability of escaping the cluster intact. These results help us to obtain a better understanding of the difference between the observed fractions of exoplanets-hosting stars in star clusters and in the Galactic field. It also allows us to make predictions about the free-floating planet population over time in different stellar environments.Comment: 14 pages, 9 figures, accepted for publication in MNRA

    Relevant framework for social applications of IoT by means of Machine Learning techniques

    Get PDF
    With the rapid development of Internet of Things (IoT) technology, billions of smart devices are being connected into a whole network and streaming out a huge amount of data every moment. Unimaginable potential value can be mined from these data with the help of "Cloud Computing" and "Machine Learning" techniques. The target of our research is to address the benefits of IoT in social applications, especially in healthcare area, by developing a multilayer framework. Low cost data collection, efficient data transfer, flexible data management and accurate data analysis mechanisms will be included in the framework. A Smart Decision Support System is supposed to be developed on the basis of this framework

    Clearing residual planetesimals by sweeping secular resonances in transitional disks: a lone-planet scenario for the wide gaps in debris disks around Vega and Fomalhaut

    Get PDF
    Extended gaps in the debris disks of both Vega and Fomalhaut have been observed. These structures have been attributed to tidal perturbations by multiple super-Jupiter gas giant planets. Within the current observational limits, however, no such massive planets have been detected. Here we propose a less stringent `lone-planet' scenario to account for the observed structure with a single eccentric gas giant and suggest that clearing of these wide gaps is induced by its sweeping secular resonance. During the depletion of the disk gas, the planet's secular resonance propagates inward and clears a wide gap over an extended region of the disk. Although some residual intermediate-size planetesimals may remain in the gap, their surface density is too low to either produce super-Earths or lead to sufficiently frequent disruptive collisions to generate any observable dusty signatures. The main advantage of this lone-planet sweeping-secular-resonance model over the previous multiple gas giant tidal truncation scenario is the relaxed requirement on the number of gas giants. The observationally inferred upper mass limit can also be satisfied provided the hypothetical planet has a significant eccentricity. A significant fraction of solar or more massive stars bear gas giant planets with significant eccentricities. If these planets acquired their present-day kinematic properties prior to the depletion of their natal disks, their sweeping secular resonance would effectively impede the retention of neighboring planets and planetesimals over a wide range of orbital semi-major axes.Comment: 20 pages, 12 figures. Accepted for publication in Ap

    Close encounters involving free-floating planets in star clusters

    Full text link
    Instabilities in planetary systems can result in the ejection of planets from their host system, resulting in free-floating planets (FFPs). If this occurs in a star cluster, the FFP may remain bound to the star cluster for some time and interact with the other cluster members until it is ejected. Here, we use NN-body simulations to characterise close star-planet and planet-planet encounters and the dynamical fate of the FFP population in star clusters containing 500−2000500-2000 single or binary star members. We find that FFPs ejected from their planetary system at low velocities typically leave the star cluster 40% earlier than their host stars, and experience tens of close (<1000<1000 AU) encounters with other stars and planets before they escape. The fraction of FFPs that experiences a close encounter depends on both the stellar density and the initial velocity distribution of the FFPs. Approximately half of the close encounters occur within the first 30 Myr, and only 10% occur after 100 Myr. The periastron velocity distribution for all encounters is well-described by a modified Maxwell-Bolzmann distribution, and the periastron distance distribution is linear over almost the entire range of distances considered, and flattens off for very close encounters due to strong gravitational focusing. Close encounters with FFPs can perturb existing planetary systems and their debris structures, and they can result in re-capture of FFPs. In addition, these FFP populations may be observed in young star clusters in imaging surveys; a comparison between observations and dynamical predictions may provide clues to the early phases of stellar and planetary dynamics in star clusters.Comment: Accepted for publication in MNRAS; 18 pages, 12 figure

    A Semantic-driven Approach for Maintenance Digitalization in the Pharmaceutical Industry

    Full text link
    The digital transformation of pharmaceutical industry is a challenging task due to the high complexity of involved elements and the strict regulatory compliance. Maintenance activities in the pharmaceutical industry play an essential role in ensuring product quality and integral functioning of equipment and premises. This paper first identifies the key challenges of digitalization in pharmaceutical industry and creates the corresponding problem space for key involved elements. A literature review is conducted to investigate the mainstream maintenance strategies, digitalization models, tools and official guidance from authorities in pharmaceutical industry. Based on the review result, a semantic-driven digitalization framework is proposed aiming to improve the digital continuity and cohesion of digital resources and technologies for maintenance activities in the pharmaceutical industry. A case study is conducted to verify the feasibility of the proposed framework based on the water sampling activities in Merck Serono facility in Switzerland. A tool-chain is presented to enable the functional modules of the framework. Some of the key functional modules within the framework are implemented and have demonstrated satisfactory performance. As one of the outcomes, a digital sampling assistant with web-based services is created to support the automated workflow of water sampling activities. The implementation result proves the potential of the proposed framework to solve the identified problems of maintenance digitalization in the pharmaceutical industry

    A novel representation of RNA secondary structure based on element-contact graphs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Depending on their specific structures, noncoding RNAs (ncRNAs) play important roles in many biological processes. Interest in developing new topological indices based on RNA graphs has been revived in recent years, as such indices can be used to compare, identify and classify RNAs. Although the topological indices presented before characterize the main topological features of RNA secondary structures, information on RNA structural details is ignored to some degree. Therefore, it is necessity to identify topological features with low degeneracy based on complete and fine-grained RNA graphical representations.</p> <p>Results</p> <p>In this study, we present a complete and fine scheme for RNA graph representation as a new basis for constructing RNA topological indices. We propose a combination of three vertex-weighted element-contact graphs (ECGs) to describe the RNA element details and their adjacent patterns in RNA secondary structure. Both the stem and loop topologies are encoded completely in the ECGs. The relationship among the three typical topological index families defined by their ECGs and RNA secondary structures was investigated from a dataset of 6,305 ncRNAs. The applicability of topological indices is illustrated by three application case studies. Based on the applied small dataset, we find that the topological indices can distinguish true pre-miRNAs from pseudo pre-miRNAs with about 96% accuracy, and can cluster known types of ncRNAs with about 98% accuracy, respectively.</p> <p>Conclusion</p> <p>The results indicate that the topological indices can characterize the details of RNA structures and may have a potential role in identifying and classifying ncRNAs. Moreover, these indices may lead to a new approach for discovering novel ncRNAs. However, further research is needed to fully resolve the challenging problem of predicting and classifying noncoding RNAs.</p
    • …
    corecore