6 research outputs found

    AC/DC Fields Demodulation Methods of Resonant Electric Field Microsensor

    No full text
    Electric field microsensors have the advantages of a small size, a low power consumption, of avoiding wear, and of measuring both direct-current (DC) and alternating-current (AC) fields, which are especially suited to applications in power systems. However, previous reports were chiefly concerned with proposing new structures or improving the resolution, and there are no systematic studies on the signal characteristics of the microsensor output and the demodulation methods under different electric fields. In this paper, the use of an improved resonant microsensor with coplanar electrodes, and the signal characteristics under a DC field, power frequency field, and AC/DC hybrid fields were thoroughly analyzed respectively, and matching demodulation methods derived from synchronous detection were proposed. We theoretically obtained that the frequencies of the detectable electric fields should be less than half of the resonant frequency of the microsensor, and that the sensitivities of the microsensor were identical for AC/DC hybrid fields with different frequencies. Experiments were conducted to verify the proposed demodulation methods. Within electric field ranges of 0–667 kV/m, the uncertainties were 2.4% and 1.5% for the most common DC and 50 Hz power frequency fields, respectively. The frequency characteristic test results of the microsensor were in agreement with those of the theoretical analysis in the range of 0–1 kHz

    Design, Fabrication and Characterization of a MEMS-Based Three-Dimensional Electric Field Sensor with Low Cross-Axis Coupling Interference

    No full text
    One of the major concerns in the development of three-dimensional (3D) electric field sensors (EFSs) is their susceptibility to cross-axis coupling interference. The output signal for each sensing axis of a 3D EFS is often coupled by electric field components from the two other orthogonal sensing axes. In this paper, a one-dimensional (1D) electric field sensor chip (EFSC) with low cross-axis coupling interference is presented. It is designed to be symmetrical, forming a pair of in-plane symmetrically-located sensing structures. Using a difference circuit, the 1D EFSC is capable of sensing parallel electric fields along symmetrical structures and eliminating cross-axis coupling interference, which is contrast to previously reported 1D EFSCs designed for perpendicular electric field component measurement. Thus, a 3D EFS with low cross-axis coupling interference can be realized using three proposed 1D EFSCs. This 3D EFS has the advantages of low cross-axis coupling interference, small size, and high integration. The testing and calibration systems of the proposed 3D EFS were developed. Experimental results show that in the range of 0–120 kV/m, cross-axis sensitivities are within 5.48%, and the total measurement errors of this 3D EFS are within 6.16%

    A High Sensitivity Electric Field Microsensor Based on Torsional Resonance

    No full text
    This paper proposes a high sensitivity electric field microsensor (EFM) based on torsional resonance. The proposed microsensor adopts torsional shutter, which is composed of shielding electrodes and torsional beams. The movable shielding electrodes and the fixed sensing electrodes are fabricated on the same plane and interdigitally arranged. Push–pull electrostatic actuation method is employed to excite the torsional shutter. Simulation results proved that the torsional shutter has higher efficiency of charge induction. The optimization of structure parameters was conducted to improve its efficiency of charge induction further. A micromachining fabrication process was developed to fabricate the EFM. Experiments were conducted to characterize the EFM. A good linearity of 0.15% was achieved within an electrostatic field range of 0–50 kV/m, and the uncertainty was below 0.38% in the three roundtrip measurements. A high sensitivity of 4.82 mV/(kV/m) was achieved with the trans-resistance of 100 MΩ, which is improved by at least one order of magnitude compared with previously reported EFMs. The efficiency of charge induction for this microsensor reached 48.19 pA/(kV/m)

    Wafer-Level Vacuum-Packaged Electric Field Microsensor: Structure Design, Theoretical Model, Microfabrication, and Characterization

    No full text
    This paper proposes a novel wafer-level vacuum packaged electric field microsensor (EFM) featuring a high quality factor, low driving voltage, low noise, and low power consumption. The silicon-on-insulator (SOI) conductive handle layer was innovatively used as the sensing channel to transmit the external electric field to the surface of the sensitive structure, and the vacuum packaging was realized through anodic bonding between the SOI and glass-on-silicon (GOS). The fabrication process was designed and successfully realized, featured with a simplified process and highly efficient batch manufacturing, and the final chip size was only 5 × 5 mm. A theoretical model for the packaged device was set up. The influence of key parameters in the packaging structure on the output characteristics of the microsensor was analyzed on the basis of the proposed model. Experiments were conducted on the wafer-level vacuum-packaged EFM to characterize its performance. Experimental results show that, under the condition of applying 5 V DC driving voltage, the required AC driving voltage of the sensor was only 0.05 VP, and the feedthrough was only 4.2 mV. The quality factor was higher than 5000 and was maintained with no drop in the 50-day test. The vacuum in the chamber of the sensor was about 10 Pa. A sensitivity of 0.16 mV/(kV/m) was achieved within the electrostatic field range of 0–50 kV/m. The linearity of the microsensor was 1.62%, and the uncertainty was 4.42%

    Involvement of <i>Laccase2</i> in Cuticle Sclerotization of the Whitefly, <i>Bemisia tabaci</i> Middle East–Asia Minor 1

    No full text
    Cuticle sclerotization is critical for insect survival. Laccase2 (Lac2) is a phenol oxidase that plays a key role in cuticle formation and pigmentation in a variety of insects. However, the function of Lac2 in whitefly, Bemisia tabaci, remains unclear. In this study, we identified a BtLac2 gene in B. tabaci MEAM1 and found that BtLac2 was expressed in all stages. It was highly expressed in the egg stage, followed by nymph and adult. Moreover, the expression of BtLac2 was higher in the cuticle than in other tissues. Knockdown of BtLac2 in nymphs produced thinner and fragile cuticles, which significantly increased the mortality rate, extended the development duration of nymphs, and decreased the emergence rate of adults. This result demonstrates that BtLac2 plays an important role in the cuticle hardening of B. tabaci and suggests a potential management strategy using RNAi to knock down BtLac2 expression
    corecore