156 research outputs found

    FORMATION AND EFFECT OF SOCIAL INTERACTIONS IN ONLINE BRAND COMMUNITY: AN EMPIRICAL INVESTIGATION

    Get PDF
    Online brand communities, enabled by social media technology, are being utilized by companies to improve marketing and sales. However, little is known about how to encourage customer interactions in an online brand community and whether the interactions can affect purchase behavior. To address these research questions, we explore factors that influence the formation of social interactions in an online brand community and assess the impact of different types of social interactions on customer purchase behavior, resulting in a set of theoretical hypotheses about social interactions for e- commerce. We test our hypotheses using a data set that includes customer social interactions and purchases in an online brand community. Our results show that homophily in certain customer characteristics (e.g,. member age, location, deal sensitivity) positively impacts the formation of social interaction while homophily in other customer characteristics (e.g,. share premium products) does not. We also find that social interactions with people who have purchased strongly influence customer purchase behavior. Furthermore, the effect of such social interactions is strengthened by geographical proximity. We discuss theoretical implications of our results and also offer practical guidelines for managers on how to manage customer relationships in online brand communities

    Self-Regulated Learning: A Study of Feedback Seeking By Integrating Self-Motives and Social Influences in an Online Context

    Get PDF
    To have an effective online communication, individuals need to be self-regulated and self-initiate online conversations when needed. Feedback seeking is a key strategy of self-regulated learning through which individuals can gain more knowledge and become more adapted. Existing studies on feedback seeking mainly focus on personal motivation rather than social factors. Drawing on the theory of planned behaviour, this study examines how both self-motives and social influence affect individuals’ feedback-seeking behaviour. Moreover, based on the relational communication theory, we also investigate how the perceptions of informational and relational value mediate the relationships between self-motives, social influences and feedback-seeking behaviour. As learning styles can affect individuals’ learning motivation and learning effectiveness, individuals’ learning styles may interact with self-motives and social influence to affect their value perceptions toward feedback. We further examine whether learning styles moderate the effects of personal and social factors on value perceptions. A survey will be undertaken to collect the data and test the proposed hypotheses. This study is expected to inspire researchers and practitioners to pay equal attention to personal and social factors in online learning. The findings also attempt to shed light on the necessity of considering informational and relational value simultaneously in studying feedback seeking behaviour

    Distraction or Connection? An Investigation of Social Media Use at Work

    Get PDF
    The use of social media in the workplace is controversial. In order to develop a good understanding of social media use at work, this study examines the effects of social media use from both positive and negative sides. Based on two-factor theory, this study proposes that social media use at work engenders distraction and perceived relatedness, which in turn influence job performance. This study further draws on resource matching theory to posit that the perceptual load of the job moderates the effects of social media use at work on distraction and perceived relatedness. A survey will be conducted to collect data and test the research hypotheses. In theoretical terms, this study is expected to contribute to information systems research by investigating both positive and negative outcomes of social media usage. In practical terms, this study sheds light on the usage and management of social media in the workplace

    Engineering pressure retarded osmosis membrane bioreactor (PRO-MBR) for simultaneous water and energy recovery from municipal wastewater

    Get PDF
    Osmotic membrane bioreactors (OMBR) have gained increasing interest in wastewater treatment and reclamation due to their high product water quality and fouling resistance. However, high energy consumption (mostly by draw solution recovery) restricted the wider application of OMBR. Herein, we propose a novel pressure retarded osmosis membrane bioreactor (PRO-MBR) for improving the economic feasibility. In comparison with conventional FO-MBR, PRO-MBR exhibited similar excellent contaminants removal performance and comparable water flux. More importantly, a considerable amount of energy can be recovered by PRO-MBR (4.1 kWh/100 m2·d), as a result of which, 10.02% of the specific energy consumption (SEC) for water recovery was reduced as compared with FO-MBR (from 1.42 kWh/m3 to 1.28 kWh/m3). Membrane orientation largely determined the performance of PRO-MBR, higher power density was achieved in AL-DS orientation (peak value of 3.4 W/m2) than that in AL-FS orientation (peak value of 1.4 W/m2). However, PRO-MBR suffered more severe and complex membrane fouling when operated in AL-DS orientation, because the porous support layer was facing sludge mixed liquor. Further investigation revealed fouling was mostly reversible for PRO-MBR, it exhibited similar flux recoverability (92.4%) to that in FO-MBR (95.1%) after osmotic backwash. Nevertheless, flux decline due to membrane fouling is still a restricting factor to power generation of PRO-MBR, its power density was decreased by 38.2% in the first 60 min due to the formation of fouling. Overall, in perspective of technoeconomic feasibility, the PRO-MBR demonstrates better potential than FO-MBR in wastewater treatment and reclamation and deserves more research attention in the future.This work was supported by the National Natural Science Foundation of China [grant number 51978312]; the Six Major Talent Peaks of Jiangsu Province [grant number 2018-JNHB-014]; and the Program to Cultivate Middle-aged and Young Science Leaders of Colleges and Universities of Jiangsu Province

    Cloning and Characterization of Low-Molecular-Weight Glutenin Subunit Alleles from Chinese Wheat Landraces ( Triticum aestivum

    Get PDF
    Low-molecular-weight glutenin subunits (LMW-GS) are of great importance in processing quality and participate in the formation of polymers in wheat. In this study, eight new LMW-GS alleles were isolated from Chinese wheat landraces (Triticum aestivum L.) and designated as Glu-A3-1a, Glu-A3-1b, Glu-B3-1a, Glu-B3-1b, Glu-B3-1c, Glu-D3-1a, Glu-D3-1b, and Glu-D3-1c, which were located at the Glu-A3, Glu-B3, and Glu-D3 loci, respectively. Based on the proteins encoded, the number of deduced amino acids of Glu-B3 alleles was approximately 50 more than those of Glu-A3 and Glu-D3 alleles. The first cysteine of Glu-A3 and Glu-D3 alleles was located at the N-terminal domain, while that of Glu-B3 alleles was found in the repetitive domain, which may lead to the different functioning in forming disulfide bonds. All the eight genes were LMW-m types and the new allele of Glu-B3-1a which had nine cysteine residues may be the desirable LMW-GS gene for improving bread-making quality

    Mesenteric CD103+DCs Initiate Switched Coxsackievirus B3 VP1-Specific IgA Response to Intranasal Chitosan-DNA Vaccine Through Secreting BAFF/IL-6 and Promoting Th17/Tfh Differentiation

    Get PDF
    Intranasal chitosan-formulated DNA vaccination promotes IgA secretion in the intestine. However, the mechanism whereby chitosan-DNA skews IgA class switch recombination (CSR) of B cells in the Gut-associated lymph tissue (GALT) is not fully resolved. In this study, we investigated the effects of nasally administered chitosan-DNA (pcDNA3.1-VP1 plasmid encoding VP1 capsid protein of Coxsackievirus B3) on IgA production, DC activation and Tfh/Th17 response in the intestine. Compared to DNA immunization, intranasal chitosan-DNA vaccination induced antigen-specific IgA production in feces, a pronounced switching of antigen-specific IgA+ plasmablast B cells in the mesenteric lymph nodes (MLNs) and an enhanced expression of post-recombination Iα-CH transcripts/IgA germline transcript (αGT) as well as activation-induced cytidine deaminase (AID) in MLN B cells. MLN Tfh frequency was markedly enhanced by chitosan-DNA, and was associated with VP1-specific IgA titer. 24 h after immunization, intranasal chitosan-DNA induced a recruitment of CD103+DCs into the MLN that paralleled a selective loss of CD103+DCs in the lamina propria (LP). In vivo activated MLN-derived CD103+DCs produced high levels of IL-6 and BAFF in response to chitosan-DNA, which up-regulated transmembrane activator and CAML interactor (TACI) expression on MLN B cells. Upon co-culture with IgM+B in the presence of chitosan-DNA, MLN CD103+DCs induced IgA production in a T-dependent manner; and this IgA-promoting effect of CD103+DC was blocked by targeting TACI and, to a lower extent, by blocking IL-6. MLN CD103+DCs displayed an enhanced capacity to induce an enhanced CD4+Th17 response in vivo and in vitro, and IL-17A deficient mice had a pronounced reduction of specific intestinal IgA following immunization. Taken together, mesenteric CD103+DCs are indispensable for the adjuvant activity of chitosan in enhancing DNA vaccine-specific IgA switching in gut through activating BAFF-TACI and IL-6-IL-6R signaling, and through inducing Th17/Tfh differentiation in the MLN

    Cloning and characterization of low-molecular-weight glutenin subunit alleles from Chinese wheat landraces (Triticum aestivum L.)

    Get PDF
    Publisher's Version/PDFLow-molecular-weight glutenin subunits (LMW-GS) are of great importance in processing quality and participate in the formation of polymers in wheat. In this study, eight new LMW-GS alleles were isolated from Chinese wheat landraces (Triticum aestivum L.) and designated as Glu-A3-1a, Glu-A3-1b, Glu-B3-1a, Glu-B3-1b, Glu-B3-1c, Glu-D3-1a, Glu-D3-1b, and Glu-D3-1c, which were located at the Glu-A3, Glu-B3, and Glu-D3 loci, respectively. Based on the proteins encoded, the number of deduced amino acids of Glu-B3 alleles was approximately 50 more than those of Glu-A3 and Glu-D3 alleles. The first cysteine of Glu-A3 and Glu-D3 alleles was located at the N-terminal domain, while that of Glu-B3 alleles was found in the repetitive domain, which may lead to the different functioning in forming disulfide bonds. All the eight genes were LMW-m types and the new allele of Glu-B3-1a which had nine cysteine residues may be the desirable LMW-GS gene for improving bread-making quality

    Cloning and Comparative Studies of Seaweed Trehalose-6-Phosphate Synthase Genes

    Get PDF
    The full-length cDNA sequence (3219 base pairs) of the trehalose-6-phosphate synthase gene of Porphyra yezoensis (PyTPS) was isolated by RACE-PCR and deposited in GenBank (NCBI) with the accession number AY729671. PyTPS encodes a protein of 908 amino acids before a stop codon, and has a calculated molecular mass of 101,591 Daltons. The PyTPS protein consists of a TPS domain in the N-terminus and a putative TPP domain at the C-terminus. Homology alignment for PyTPS and the TPS proteins from bacteria, yeast and higher plants indicated that the most closely related sequences to PyTPS were those from higher plants (OsTPS and AtTPS5), whereas the most distant sequence to PyTPS was from bacteria (EcOtsAB). Based on the identified sequence of the PyTPS gene, PCR primers were designed and used to amplify the TPS genes from nine other seaweed species. Sequences of the nine obtained TPS genes were deposited in GenBank (NCBI). All 10 TPS genes encoded peptides of 908 amino acids and the sequences were highly conserved both in nucleotide composition (>94%) and in amino acid composition (>96%). Unlike the TPS genes from some other plants, there was no intron in any of the 10 isolated seaweed TPS genes
    • 

    corecore