87 research outputs found

    Statistical Approaches for Estimation and Comparison of Brain Functional Connectivity

    Get PDF
    Drug addiction can lead to many health-related problems and social concerns. Functional connectivity obtained from functional magnetic resonance imaging (fMRI) data promotes a variety of fundamental understandings in such association. Due to its complex correlation structure and large dimensionality, the modeling and analysis of the functional connectivity from neuroimage are challenging. By proposing a spatio-temporal model for multi-subject neuroimage data, we incorporate voxel-level spatio-temporal dependencies of whole-brain measurements to improve the accuracy of statistical inference. To tackle large-scale spatio-temporal neuroimage data, we develop a computationally efficient algorithm to estimate the parameters. Our method is used to identify functional connectivity and detect the effect of cocaine use disorder (CUD) on functional connectivity between different brain regions. The functional connectivity identified by our spatio-temporal model matches existing studies on brain networks, and further indicates that CUD may alter the functional connectivity in the medial orbitofrontal cortex subregions and the supplementary motor areas. We further propose a method that jointly estimates the graphical models which share the common structure, while allowing for differences between categories in the data. By assigning different tuning parameters for the contrast of each categorical factor, our method could estimate the effects of multiple treatments or factors across brain regions accurately and achieve computational efficiency at the same time. Simulation studies suggest our method achieves better accuracy in network estimation compared with the joint graphical lasso method. We apply our method to the cocaine-use disorder data and identify functional connectivity in brain affected by cocaine use disorder and gender

    Algorithmic and sensor-based research on Chinese children’s and adolescents’ screen use behavior and light environment

    Get PDF
    BackgroundMyopia poses a global health concern and is influenced by both genetic and environmental factors. The incidence of myopia tends to increase during infectious outbreaks, such as the COVID-19 pandemic. This study examined the screen-time behaviors among Chinese children and adolescents and investigated the efficacy of artificial intelligence (AI)-based alerts in modifying screen-time practices.MethodsA cross-sectional analysis was performed using data from 6,716 children and adolescents with AI-enhanced tablets that monitored and recorded their behavior and environmental light during screen time.ResultsThe median daily screen time of all participants was 58.82 min. Among all age groups, elementary-school students had the longest median daily screen time, which was 87.25 min and exceeded 4 h per week. Children younger than 2 years engaged with tablets for a median of 41.84 min per day. Learning accounted for 54.88% of participants’ screen time, and 51.03% (3,390/6,643) of the participants used tablets for 1 h at an average distance <50 cm. The distance and posture alarms were triggered 807,355 and 509,199 times, respectively. In the study, 70.65% of the participants used the tablet under an illuminance of <300 lux during the day and 61.11% under an illuminance of <100 lux at night. The ambient light of 85.19% of the participants exceeded 4,000 K color temperature during night. Most incorrect viewing habits (65.49% in viewing distance; 86.48% in viewing posture) were rectified swiftly following AI notifications (all p < 0.05).ConclusionYoung children are increasingly using digital screens, with school-age children and adolescents showing longer screen time than preschoolers. The study highlighted inadequate lighting conditions during screen use. AI alerts proved effective in prompting users to correct their screen-related behavior promptly
    • …
    corecore