34 research outputs found

    Thompson sampling based Monte-Carlo planning in POMDPs

    No full text
    Monte-Carlo tree search (MCTS) has been drawinggreat interest in recent years for planning under uncertainty. One of the key challenges is the tradeoffbetween exploration and exploitation. To addressthis, we introduce a novel online planning algorithmfor large POMDPs using Thompson sampling basedMCTS that balances between cumulative and simple regrets.The proposed algorithm — Dirichlet-Dirichlet-NormalGamma based Partially Observable Monte-Carlo Planning (D2NG-POMCP) — treats the accumulatedreward of performing an action from a beliefstate in the MCTS search tree as a random variable followingan unknown distribution with hidden parameters.Bayesian method is used to model and infer theposterior distribution of these parameters by choosingthe conjugate prior in the form of a combination of twoDirichlet and one NormalGamma distributions. Thompsonsampling is exploited to guide the action selection inthe search tree. Experimental results confirmed that ouralgorithm outperforms the state-of-the-art approacheson several common benchmark problems

    Policy Regularization with Dataset Constraint for Offline Reinforcement Learning

    Full text link
    We consider the problem of learning the best possible policy from a fixed dataset, known as offline Reinforcement Learning (RL). A common taxonomy of existing offline RL works is policy regularization, which typically constrains the learned policy by distribution or support of the behavior policy. However, distribution and support constraints are overly conservative since they both force the policy to choose similar actions as the behavior policy when considering particular states. It will limit the learned policy's performance, especially when the behavior policy is sub-optimal. In this paper, we find that regularizing the policy towards the nearest state-action pair can be more effective and thus propose Policy Regularization with Dataset Constraint (PRDC). When updating the policy in a given state, PRDC searches the entire dataset for the nearest state-action sample and then restricts the policy with the action of this sample. Unlike previous works, PRDC can guide the policy with proper behaviors from the dataset, allowing it to choose actions that do not appear in the dataset along with the given state. It is a softer constraint but still keeps enough conservatism from out-of-distribution actions. Empirical evidence and theoretical analysis show that PRDC can alleviate offline RL's fundamentally challenging value overestimation issue with a bounded performance gap. Moreover, on a set of locomotion and navigation tasks, PRDC achieves state-of-the-art performance compared with existing methods. Code is available at https://github.com/LAMDA-RL/PRDCComment: Accepted to ICML 202

    Attention-Guided Contrastive Role Representations for Multi-Agent Reinforcement Learning

    Full text link
    Real-world multi-agent tasks usually involve dynamic team composition with the emergence of roles, which should also be a key to efficient cooperation in multi-agent reinforcement learning (MARL). Drawing inspiration from the correlation between roles and agent's behavior patterns, we propose a novel framework of **A**ttention-guided **CO**ntrastive **R**ole representation learning for **M**ARL (**ACORM**) to promote behavior heterogeneity, knowledge transfer, and skillful coordination across agents. First, we introduce mutual information maximization to formalize role representation learning, derive a contrastive learning objective, and concisely approximate the distribution of negative pairs. Second, we leverage an attention mechanism to prompt the global state to attend to learned role representations in value decomposition, implicitly guiding agent coordination in a skillful role space to yield more expressive credit assignment. Experiments on challenging StarCraft II micromanagement and Google research football tasks demonstrate the state-of-the-art performance of our method and its advantages over existing approaches. Our code is available at [https://github.com/NJU-RL/ACORM](https://github.com/NJU-RL/ACORM)

    Efficient Deep Reinforcement Learning via Adaptive Policy Transfer

    Full text link
    Transfer Learning (TL) has shown great potential to accelerate Reinforcement Learning (RL) by leveraging prior knowledge from past learned policies of relevant tasks. Existing transfer approaches either explicitly computes the similarity between tasks or select appropriate source policies to provide guided explorations for the target task. However, how to directly optimize the target policy by alternatively utilizing knowledge from appropriate source policies without explicitly measuring the similarity is currently missing. In this paper, we propose a novel Policy Transfer Framework (PTF) to accelerate RL by taking advantage of this idea. Our framework learns when and which source policy is the best to reuse for the target policy and when to terminate it by modeling multi-policy transfer as the option learning problem. PTF can be easily combined with existing deep RL approaches. Experimental results show it significantly accelerates the learning process and surpasses state-of-the-art policy transfer methods in terms of learning efficiency and final performance in both discrete and continuous action spaces.Comment: Accepted by IJCAI'202

    Disentangling Policy from Offline Task Representation Learning via Adversarial Data Augmentation

    Full text link
    Offline meta-reinforcement learning (OMRL) proficiently allows an agent to tackle novel tasks while solely relying on a static dataset. For precise and efficient task identification, existing OMRL research suggests learning separate task representations that be incorporated with policy input, thus forming a context-based meta-policy. A major approach to train task representations is to adopt contrastive learning using multi-task offline data. The dataset typically encompasses interactions from various policies (i.e., the behavior policies), thus providing a plethora of contextual information regarding different tasks. Nonetheless, amassing data from a substantial number of policies is not only impractical but also often unattainable in realistic settings. Instead, we resort to a more constrained yet practical scenario, where multi-task data collection occurs with a limited number of policies. We observed that learned task representations from previous OMRL methods tend to correlate spuriously with the behavior policy instead of reflecting the essential characteristics of the task, resulting in unfavorable out-of-distribution generalization. To alleviate this issue, we introduce a novel algorithm to disentangle the impact of behavior policy from task representation learning through a process called adversarial data augmentation. Specifically, the objective of adversarial data augmentation is not merely to generate data analogous to offline data distribution; instead, it aims to create adversarial examples designed to confound learned task representations and lead to incorrect task identification. Our experiments show that learning from such adversarial samples significantly enhances the robustness and effectiveness of the task identification process and realizes satisfactory out-of-distribution generalization

    Retrosynthetic Planning with Dual Value Networks

    Full text link
    Retrosynthesis, which aims to find a route to synthesize a target molecule from commercially available starting materials, is a critical task in drug discovery and materials design. Recently, the combination of ML-based single-step reaction predictors with multi-step planners has led to promising results. However, the single-step predictors are mostly trained offline to optimize the single-step accuracy, without considering complete routes. Here, we leverage reinforcement learning (RL) to improve the single-step predictor, by using a tree-shaped MDP to optimize complete routes. Specifically, we propose a novel online training algorithm, called Planning with Dual Value Networks (PDVN), which alternates between the planning phase and updating phase. In PDVN, we construct two separate value networks to predict the synthesizability and cost of molecules, respectively. To maintain the single-step accuracy, we design a two-branch network structure for the single-step predictor. On the widely-used USPTO dataset, our PDVN algorithm improves the search success rate of existing multi-step planners (e.g., increasing the success rate from 85.79% to 98.95% for Retro*, and reducing the number of model calls by half while solving 99.47% molecules for RetroGraph). Additionally, PDVN helps find shorter synthesis routes (e.g., reducing the average route length from 5.76 to 4.83 for Retro*, and from 5.63 to 4.78 for RetroGraph).Comment: Accepted to ICML 202
    corecore