3 research outputs found

    VR-GNN: Variational Relation Vector Graph Neural Network for Modeling both Homophily and Heterophily

    Full text link
    Graph Neural Networks (GNNs) have achieved remarkable success in diverse real-world applications. Traditional GNNs are designed based on homophily, which leads to poor performance under heterophily scenarios. Current solutions deal with heterophily mainly by mixing high-order neighbors or passing signed messages. However, mixing high-order neighbors destroys the original graph structure and passing signed messages utilizes an inflexible message-passing mechanism, which is prone to producing unsatisfactory effects. To overcome the above problems, we propose a novel GNN model based on relation vector translation named Variational Relation Vector Graph Neural Network (VR-GNN). VR-GNN models relation generation and graph aggregation into an end-to-end model based on Variational Auto-Encoder. The encoder utilizes the structure, feature and label to generate a proper relation vector. The decoder achieves superior node representation by incorporating the relation translation into the message-passing framework. VR-GNN can fully capture the homophily and heterophily between nodes due to the great flexibility of relation translation in modeling neighbor relationships. We conduct extensive experiments on eight real-world datasets with different homophily-heterophily properties to verify the effectiveness of our model. The experimental results show that VR-GNN gains consistent and significant improvements against state-of-the-art GNN methods under heterophily, and competitive performance under homophily

    Side-Scan Sonar Image Classification Based on Style Transfer and Pre-Trained Convolutional Neural Networks

    No full text
    Side-scan sonar is widely used in underwater rescue and the detection of undersea targets, such as shipwrecks, aircraft crashes, etc. Automatic object classification plays an important role in the rescue process to reduce the workload of staff and subjective errors caused by visual fatigue. However, the application of automatic object classification in side-scan sonar images is still lacking, which is due to a lack of datasets and the small number of image samples containing specific target objects. Secondly, the real data of side-scan sonar images are unbalanced. Therefore, a side-scan sonar image classification method based on synthetic data and transfer learning is proposed in this paper. In this method, optical images are used as inputs and the style transfer network is employed to simulate the side-scan sonar image to generate “simulated side-scan sonar images”; meanwhile, a convolutional neural network pre-trained on ImageNet is introduced for classification. In this paper, we experimentally demonstrate that the maximum accuracy of target classification is up to 97.32% by fine-tuning the pre-trained convolutional neural network using a training set incorporating “simulated side-scan sonar images”. The results show that the classification accuracy can be effectively improved by combining a pre-trained convolutional neural network and “similar side-scan sonar images”
    corecore