5,665 research outputs found

    Power Scaling of Uplink Massive MIMO Systems with Arbitrary-Rank Channel Means

    Full text link
    This paper investigates the uplink achievable rates of massive multiple-input multiple-output (MIMO) antenna systems in Ricean fading channels, using maximal-ratio combining (MRC) and zero-forcing (ZF) receivers, assuming perfect and imperfect channel state information (CSI). In contrast to previous relevant works, the fast fading MIMO channel matrix is assumed to have an arbitrary-rank deterministic component as well as a Rayleigh-distributed random component. We derive tractable expressions for the achievable uplink rate in the large-antenna limit, along with approximating results that hold for any finite number of antennas. Based on these analytical results, we obtain the scaling law that the users' transmit power should satisfy, while maintaining a desirable quality of service. In particular, it is found that regardless of the Ricean KK-factor, in the case of perfect CSI, the approximations converge to the same constant value as the exact results, as the number of base station antennas, MM, grows large, while the transmit power of each user can be scaled down proportionally to 1/M1/M. If CSI is estimated with uncertainty, the same result holds true but only when the Ricean KK-factor is non-zero. Otherwise, if the channel experiences Rayleigh fading, we can only cut the transmit power of each user proportionally to 1/M1/\sqrt M. In addition, we show that with an increasing Ricean KK-factor, the uplink rates will converge to fixed values for both MRC and ZF receivers

    Deep Learning Based on Orthogonal Approximate Message Passing for CP-Free OFDM

    Full text link
    Channel estimation and signal detection are very challenging for an orthogonal frequency division multiplexing (OFDM) system without cyclic prefix (CP). In this article, deep learning based on orthogonal approximate message passing (DL-OAMP) is used to address these problems. The DL-OAMP receiver includes a channel estimation neural network (CE-Net) and a signal detection neural network based on OAMP, called OAMP-Net. The CE-Net is initialized by the least square channel estimation algorithm and refined by minimum mean-squared error (MMSE) neural network. The OAMP-Net is established by unfolding the iterative OAMP algorithm and adding some trainable parameters to improve the detection performance. The DL-OAMP receiver is with low complexity and can estimate time-varying channels with only a single training. Simulation results demonstrate that the bit-error rate (BER) of the proposed scheme is lower than those of competitive algorithms for high-order modulation.Comment: 5 pages, 4 figures, updated manuscript, International Conference on Acoustics, Speech and Signal Processing (ICASSP 2019). arXiv admin note: substantial text overlap with arXiv:1903.0476

    Leveraging Vision Reconstruction Pipelines for Satellite Imagery

    Full text link
    Reconstructing 3D geometry from satellite imagery is an important topic of research. However, disparities exist between how this 3D reconstruction problem is handled in the remote sensing context and how multi-view reconstruction pipelines have been developed in the computer vision community. In this paper, we explore whether state-of-the-art reconstruction pipelines from the vision community can be applied to the satellite imagery. Along the way, we address several challenges adapting vision-based structure from motion and multi-view stereo methods. We show that vision pipelines can offer competitive speed and accuracy in the satellite context.Comment: Project Page: https://kai-46.github.io/VisSat
    • …
    corecore