57,584 research outputs found
Tuning electronic structure of graphene via tailoring structure: theoretical study
Electronic structures of graphene sheet with different defective patterns are
investigated, based on the first principles calculations. We find that
defective patterns can tune the electronic structures of the graphene
significantly. Triangle patterns give rise to strongly localized states near
the Fermi level, and hexagonal patterns open up band gaps in the systems. In
addition, rectangular patterns, which feature networks of graphene nanoribbons
with either zigzag or armchair edges, exhibit semiconducting behaviors, where
the band gap has an evident dependence on the width of the nanoribbons. For the
networks of the graphene nanoribbons, some special channels for electronic
transport are predicted.Comment: 5 figures, 6 page
Ti-rich and Cu-poor grain-boundary layers of CaCuTiO detected by x-ray photoelectron spectroscopy
Cleaved and polished surfaces of CaCuTiO ceramics have been
investigated by x-ray photoelectron spectroscopy (XPS) and energy dispersive
x-ray spectroscopy (EDX), respectively. While EDX technique shows the identical
CaCuTiO stoichiometry for the two surfaces, XPS indicates that
the cleaved surface with grain-boundary layers is remarkably Ti-rich and
Cu-poor. The core-level spectrum of Cu 2 unambiguously shows the existence
of monovalent copper only for the cleaved surface. Possible grain-boundary
structure and its formation are discussed.Comment: 8 pages, 3 figure
Making vortices in dipolar spinor condensates via rapid adiabatic passage
We propose to the create vortices in spin-1 condensates via magnetic
dipole-dipole interaction. Starting with a polarized condensate prepared under
large axial magnetic field, we show that by gradually inverting the field,
population transfer among different spin states can be realized in a controlled
manner. Under optimal condition, we generate a doubly quantized vortex state
containing nearly all atoms in the condensate. The resulting vortex state is a
direct manifestation of the dipole-dipole interaction and spin textures in
spinor condensates. We also point out that the whole process can be
qualitatively described by a simple rapid adiabatic passage model.Comment: 4 pages, 4 figure
A Tensor-Based Framework for Studying Eigenvector Multicentrality in Multilayer Networks
Centrality is widely recognized as one of the most critical measures to
provide insight in the structure and function of complex networks. While
various centrality measures have been proposed for single-layer networks, a
general framework for studying centrality in multilayer networks (i.e.,
multicentrality) is still lacking. In this study, a tensor-based framework is
introduced to study eigenvector multicentrality, which enables the
quantification of the impact of interlayer influence on multicentrality,
providing a systematic way to describe how multicentrality propagates across
different layers. This framework can leverage prior knowledge about the
interplay among layers to better characterize multicentrality for varying
scenarios. Two interesting cases are presented to illustrate how to model
multilayer influence by choosing appropriate functions of interlayer influence
and design algorithms to calculate eigenvector multicentrality. This framework
is applied to analyze several empirical multilayer networks, and the results
corroborate that it can quantify the influence among layers and multicentrality
of nodes effectively.Comment: 57 pages, 10 figure
- …