14 research outputs found
Security and accuracy of fingerprint-based biometrics: A review
Biometric systems are increasingly replacing traditional password- and token-based authentication systems. Security and recognition accuracy are the two most important aspects to consider in designing a biometric system. In this paper, a comprehensive review is presented to shed light on the latest developments in the study of fingerprint-based biometrics covering these two aspects with a view to improving system security and recognition accuracy. Based on a thorough analysis and discussion, limitations of existing research work are outlined and suggestions for future work are provided. It is shown in the paper that researchers continue to face challenges in tackling the two most critical attacks to biometric systems, namely, attacks to the user interface and template databases. How to design proper countermeasures to thwart these attacks, thereby providing strong security and yet at the same time maintaining high recognition accuracy, is a hot research topic currently, as well as in the foreseeable future. Moreover, recognition accuracy under non-ideal conditions is more likely to be unsatisfactory and thus needs particular attention in biometric system design. Related challenges and current research trends are also outlined in this paper
Integration of biometrics and steganography: A comprehensive review
The use of an individualâs biometric characteristics to advance authentication and verification technology beyond the current dependence on passwords has been the subject of extensive research for some time. Since such physical characteristics cannot be hidden from the public eye, the security of digitised biometric data becomes paramount to avoid the risk of substitution or replay attacks. Biometric systems have readily embraced cryptography to encrypt the data extracted from the scanning of anatomical features. Significant amounts of research have also gone into the integration of biometrics with steganography to add a layer to the defence-in-depth security model, and this has the potential to augment both access control parameters and the secure transmission of sensitive biometric data. However, despite these efforts, the amalgamation of biometric and steganographic methods has failed to transition from the research lab into real-world applications. In light of this review of both academic and industry literature, we suggest that future research should focus on identifying an acceptable level steganographic embedding for biometric applications, securing exchange of steganography keys, identifying and address legal implications, and developing industry standards
Security and accuracy of fingerprint-based biometrics: A review
Biometric systems are increasingly replacing traditional password- and token-based authentication systems. Security and recognition accuracy are the two most important aspects to consider in designing a biometric system. In this paper, a comprehensive review is presented to shed light on the latest developments in the study of fingerprint-based biometrics covering these two aspects with a view to improving system security and recognition accuracy. Based on a thorough analysis and discussion, limitations of existing research work are outlined and suggestions for future work are provided. It is shown in the paper that researchers continue to face challenges in tackling the two most critical attacks to biometric systems, namely, attacks to the user interface and template databases. How to design proper countermeasures to thwart these attacks, thereby providing strong security and yet at the same time maintaining high recognition accuracy, is a hot research topic currently, as well as in the foreseeable future. Moreover, recognition accuracy under non-ideal conditions is more likely to be unsatisfactory and thus needs particular attention in biometric system design. Related challenges and current research trends are also outlined in this paper
Muscle activity-driven green-oriented random number generation mechanism to secure WBSN wearable device communications
Wireless body sensor networks (WBSNs) mostly consist of low-cost sensor nodes and implanted devices which generally have extremely limited capability of computations and energy capabilities. Hence, traditional security protocols and privacy enhancing technologies are not applicable to the WBSNs since their computations and cryptographic primitives are normally exceedingly complicated. Nowadays, mobile wearable and wireless muscle-computer interfaces have been integrated with the WBSN sensors for various applications such as rehabilitation, sports, entertainment, and healthcare. In this paper, we propose MGRNG, a novel muscle activity-driven green-oriented random number generation mechanism which uses the human muscle activity as green energy resource to generate random numbers (RNs). The RNs can be used to enhance the privacy of wearable device communications and secure WBSNs for rehabilitation purposes. The method was tested on 10 healthy subjects as well as 5 amputee subjects with 105 segments of simultaneously recorded surface electromyography signals from their forearm muscles. The proposed MGRNG requires only one second to generate a 128-bit RN, which is much more efficient when compared to the electrocardiography-based RN generation algorithms. Experimental results show that the RNs generated from human muscle activity signals can pass the entropy test and the NIST random test and thus can be used to secure the WBSN nodes
A cancelable iris- and steganography-based user authentication system for the Internet of Things
Remote user authentication for Internet of Things (IoT) devices is critical to IoT security, as it helps prevent unauthorized access to IoT networks. Biometrics is an appealing authentication technique due to its advantages over traditional password-based authentication. However, the protection of biometric data itself is also important, as original biometric data cannot be replaced or reissued if compromised. In this paper, we propose a cancelable iris- and steganography-based user authentication system to provide user authentication and secure the original iris data. Most of the existing cancelable iris biometric systems need a user-specific key to guide feature transformation, e.g., permutation or random projection, which is also known as key-dependent transformation. One issue associated with key-dependent transformations is that if the user-specific key is compromised, some useful information can be leaked and exploited by adversaries to restore the original iris feature data. To mitigate this risk, the proposed scheme enhances system security by integrating an effective information-hiding technique-steganography. By concealing the user-specific key, the threat of key exposure-related attacks, e.g., attacks via record multiplicity, can be defused, thus heightening the overall system security and complementing the protection offered by cancelable biometric techniques
Muscle Activity-Driven Green-Oriented Random Number Generation Mechanism to Secure WBSN Wearable Device Communications
Wireless body sensor networks (WBSNs) mostly consist of low-cost sensor nodes and implanted devices which generally have extremely limited capability of computations and energy capabilities. Hence, traditional security protocols and privacy enhancing technologies are not applicable to the WBSNs since their computations and cryptographic primitives are normally exceedingly complicated. Nowadays, mobile wearable and wireless muscle-computer interfaces have been integrated with the WBSN sensors for various applications such as rehabilitation, sports, entertainment, and healthcare. In this paper, we propose MGRNG, a novel muscle activity-driven green-oriented random number generation mechanism which uses the human muscle activity as green energy resource to generate random numbers (RNs). The RNs can be used to enhance the privacy of wearable device communications and secure WBSNs for rehabilitation purposes. The method was tested on 10 healthy subjects as well as 5 amputee subjects with 105 segments of simultaneously recorded surface electromyography signals from their forearm muscles. The proposed MGRNG requires only one second to generate a 128-bit RN, which is much more efficient when compared to the electrocardiography-based RN generation algorithms. Experimental results show that the RNs generated from human muscle activity signals can pass the entropy test and the NIST random test and thus can be used to secure the WBSN nodes