78 research outputs found

    Nonnegative Matrix Factorization Numerical Method for Integrated Photonic Cavity Based Spectroscopy

    Get PDF
    Nonnegative matrix factorization numerical method has been used to improve the spectral resolution of integrated photonic cavity based spectroscopy. Based on the experimental results for integrated photonic cavity device on Optics Letters 32, 632 (2007), the theoretical results show that the spectral resolution can be improved more than 3 times from 5.5 nm to 1.8 nm. It is a promising way to release the difficulty of fabricating high-resolution devices

    On the Near-Pole Hole Insertion Layer and the Far-Pole Hole Insertion Layer for Multi-Quantum-Well Deep Ultraviolet Light-Emitting Diodes

    No full text
    A novel Multi-Quantum-Well Deep Ultra Violet Light Emitting Diode (DUV-LED) device with a near-pole hole insertion layer and far-pole hole insertion layer was proposed and carefully studied. It was found that remarkable enhancements both in the light output power (LOP) and the internal quantum efficiency (IQE) could be realized by using the far-electrode hole insertion layer and near-electrode hole insertion layer compared to the conventional DUV-LED device. Inserting the near-polar hole insertion layer can increase the electric field in the hole injection layer, which will promote the ionization of the acceptor, increase the hole concentration, and enhance the light-emitting performance of the device. In addition, inserting the far-pole hole insertion layer can suppress electron leakage and promote the hole injection. At the same time, the updated electron barrier height of P-AlGaN/GaN will indirectly weaken the electrostatic field in the hole injection layer, which remains inconducive to the ionization of the acceptor, implying that the electrostatic field between the P-AGaN/GaN layer can optimize the efficiency droop of the device

    Automatic Registration of Homogeneous and Cross-Source TomoSAR Point Clouds in Urban Areas

    No full text
    Building reconstruction using high-resolution satellite-based synthetic SAR tomography (TomoSAR) is of great importance in urban planning and city modeling applications. However, since the imaging mode of SAR is side-by-side, the TomoSAR point cloud of a single orbit cannot achieve a complete observation of buildings. It is difficult for existing methods to extract the same features, as well as to use the overlap rate to achieve the alignment of the homologous TomoSAR point cloud and the cross-source TomoSAR point cloud. Therefore, this paper proposes a robust alignment method for TomoSAR point clouds in urban areas. First, noise points and outlier points are filtered by statistical filtering, and density of projection point (DoPP)-based projection is used to extract TomoSAR building point clouds and obtain the facade points for subsequent calculations based on density clustering. Subsequently, coarse alignment of source and target point clouds was performed using principal component analysis (PCA). Lastly, the rotation and translation coefficients were calculated using the angle of the normal vector of the opposite facade of the building and the distance of the outer end of the facade projection. The experimental results verify the feasibility and robustness of the proposed method. For the homologous TomoSAR point cloud, the experimental results show that the average rotation error of the proposed method was less than 0.1°, and the average translation error was less than 0.25 m. The alignment accuracy of the cross-source TomoSAR point cloud was evaluated for the defined angle and distance, whose values were less than 0.2° and 0.25 m

    Applicability of Femtosecond Laser Electronic Excitation Tagging in Combustion Flow Field Velocity Measurements

    No full text
    Femtosecond laser electronic excitation tagging (FLEET) is a molecular tagging velocimetry technique that can be applied in combustion flow fields, although detailed studies of its application in combustion are still needed. We report the applicability of FLEET in premixed CH4–air flames. We found that FLEET can be applied in all of the combustion areas (e.g., the unburned region, the burned region and the reaction zone). The FLEET signal in the unburned region is significantly higher than that in the burned region. This technique is suitable for both lean and rich CH4–air combustion flow fields and its performance in lean flames is better than that in rich flames

    Role of AIF in human coronary artery endothelial cell apoptosis

    No full text

    Strategy for single-shot CH3 imaging in premixed methane/air flames using photofragmentation laser-induced fluorescence

    No full text
    Single-shot imaging of methyl radical (CH3) in premixed methane/air flames is demonstrated using photofragmentation laser-induced fluorescence (PF-LIF) technique. A pump-probe strategy was adopted with the pump laser at 212.8 nm photolyzing CH3, and with the probe laser at 426.8 nm detecting the photolyzed CH (X 2Π) fragments. Spatially resolved spectrograph of the PF-LIF signal from a stable laminar flame was recorded across the reaction zone to investigate potential interferences. The results indicate that the single-photon channel, CH3 + 212.8 nm → CH (X 2Π) + H2, dominates the photofragmentation process. The CH2 radical was excluded from being an interfering precursor of the CH (X 2Π) fragments owing to its relatively low concentration and small absorption cross section. Naturally present CH in the flame was identified as the main interference, but was conservatively estimated to account for only less than 4% of the total PF-LIF signal. Signal-to-noise ratio of around 10 was realized for single-shot imaging of natural CH3 in turbulent jet flames

    One-dimensional full-range mixture fraction measurements with femtosecond laser-induced plasma spectroscopy

    No full text
    Abstract: Femtosecond laser-induced plasma spectroscopy (FLIPS) was performed to achieve full-range mixture fraction measurements in non-reacting CH4/air flow fields. A femtosecond laser at 800 nm was used to generate a plasma channel with a uniform intensity distribution. Through measuring spatially resolved spectra and calibration, we found that the spectral intensity ratios of CH (431 nm)/N2 (337 nm), CH (431 nm)/N2 (357 nm), C2 (516.5 nm)/N2 (337 nm), C2 (516.5 nm)/N2 (357 nm) and CH (431 nm)/O (777 nm) could be used to realize mixture fraction measurements, and the first four intensity ratios can achieve full-range mixture fraction measurements. Furthermore, through quantitative analysis of the distribution along the plasma channel, we analyzed the one-dimensional measurement capability of FLIPS. The main advantages of FLIPS for mixture fraction measurements are one-dimensional quantitative measurement, full-range measurement, high spatial resolution and no Bremsstrahlung interference. Graphic abstract: [Figure not available: see fulltext.]

    Instantaneous one-dimensional ammonia measurements with femtosecond two-photon laser-induced fluorescence (fs-TPLIF)

    No full text
    Ammonia (NH3) has been identified as a potential hydrogen-carrier fuel with no carbon emissions. Non-intrusive in-situ NH3 diagnostic technique is of great interest. In this work, femtosecond two-photon laser-induced fluorescence (fs-TPLIF) was demonstrated in NH3/N2 mixtures to achieve NH3 measurements. A femtosecond laser at 305 nm was used for two-photon excitation of NH3 to its excited state (X–C′), and the subsequent fluorescence at ~565 nm from transition C′-A was detected. In addition, a detection limit of 730 ppm was achieved in NH3/N2 mixtures. Furthermore, one-dimensional single-shot images of NH3 were obtained in both laminar and turbulent flow fields. This work is the first attempt of fs-TPLIF for polyatomic molecular gases measurements, and the obtained results indicate that fs-TPLIF could be a promising tool for NH3 measurements

    Ammonia measurements with femtosecond laser-induced plasma spectroscopy

    No full text
    Femtosecond laser-induced plasma spectroscopy for in situ ammonia (NH 3 ) measurements was demonstrated in NH 3 ∕N 2 mixtures. When a femtosecond laser at 800 nm was focused at the flow field, the parent NH 3 molecules would be photolyzed to generate electronics excited NH fragments, and then indirect measurements of NH 3 could be realized by detecting the NH fluorescence (A 3 Π − X 3 Σ − ) at 336 nm. A detection limit of 205 ppm was achieved. This work is the first attempt, to the best of our knowledge, for ammonia measurements with a femtosecond laser, and the results are useful for the development of ammonia diagnostics
    • …
    corecore