24 research outputs found

    Low-rank Tensor Estimation via Riemannian Gauss-Newton: Statistical Optimality and Second-Order Convergence

    Full text link
    In this paper, we consider the estimation of a low Tucker rank tensor from a number of noisy linear measurements. The general problem covers many specific examples arising from applications, including tensor regression, tensor completion, and tensor PCA/SVD. We consider an efficient Riemannian Gauss-Newton (RGN) method for low Tucker rank tensor estimation. Different from the generic (super)linear convergence guarantee of RGN in the literature, we prove the first local quadratic convergence guarantee of RGN for low-rank tensor estimation in the noisy setting under some regularity conditions and provide the corresponding estimation error upper bounds. A deterministic estimation error lower bound, which matches the upper bound, is provided that demonstrates the statistical optimality of RGN. The merit of RGN is illustrated through two machine learning applications: tensor regression and tensor SVD. Finally, we provide the simulation results to corroborate our theoretical findings

    Computational and Statistical Thresholds in Multi-layer Stochastic Block Models

    Full text link
    We study the problem of community recovery and detection in multi-layer stochastic block models, focusing on the critical network density threshold for consistent community structure inference. Using a prototypical two-block model, we reveal a computational barrier for such multi-layer stochastic block models that does not exist for its single-layer counterpart: When there are no computational constraints, the density threshold depends linearly on the number of layers. However, when restricted to polynomial-time algorithms, the density threshold scales with the square root of the number of layers, assuming correctness of a low-degree polynomial hardness conjecture. Our results provide a nearly complete picture of the optimal inference in multiple-layer stochastic block models and partially settle the open question in Lei and Lin (2022) regarding the optimality of the bias-adjusted spectral method.Comment: 31 page

    On Geometric Connections of Embedded and Quotient Geometries in Riemannian Fixed-rank Matrix Optimization

    Full text link
    In this paper, we propose a general procedure for establishing the geometric landscape connections of a Riemannian optimization problem under the embedded and quotient geometries. By applying the general procedure to the fixed-rank positive semidefinite (PSD) and general matrix optimization, we establish an exact Riemannian gradient connection under two geometries at every point on the manifold and sandwich inequalities between the spectra of Riemannian Hessians at Riemannian first-order stationary points (FOSPs). These results immediately imply an equivalence on the sets of Riemannian FOSPs, Riemannian second-order stationary points (SOSPs), and strict saddles of fixed-rank matrix optimization under the embedded and the quotient geometries. To the best of our knowledge, this is the first geometric landscape connection between the embedded and the quotient geometries for fixed-rank matrix optimization and it provides a concrete example of how these two geometries are connected in Riemannian optimization. In addition, the effects of the Riemannian metric and quotient structure on the landscape connection are discussed. We also observe an algorithmic connection between two geometries with some specific Riemannian metrics in fixed-rank matrix optimization: there is an equivalence between gradient flows under two geometries with shared spectra of Riemannian Hessians. A number of novel ideas and technical ingredients including a unified treatment for different Riemannian metrics, novel metrics for the Stiefel manifold, and new horizontal space representations under quotient geometries are developed to obtain our results. The results in this paper deepen our understanding of geometric and algorithmic connections of Riemannian optimization under different Riemannian geometries and provide a few new theoretical insights to unanswered questions in the literature

    One-dimensional Tensor Network Recovery

    Full text link
    We study the recovery of the underlying graphs or permutations for tensors in tensor ring or tensor train format. Our proposed algorithms compare the matricization ranks after down-sampling, whose complexity is O(dlogd)O(d\log d) for dd-th order tensors. We prove that our algorithms can almost surely recover the correct graph or permutation when tensor entries can be observed without noise. We further establish the robustness of our algorithms against observational noise. The theoretical results are validated by numerical experiments

    Exact Clustering in Tensor Block Model: Statistical Optimality and Computational Limit

    Full text link
    High-order clustering aims to identify heterogeneous substructures in multiway datasets that arise commonly in neuroimaging, genomics, social network studies, etc. The non-convex and discontinuous nature of this problem pose significant challenges in both statistics and computation. In this paper, we propose a tensor block model and the computationally efficient methods, \emph{high-order Lloyd algorithm} (HLloyd), and \emph{high-order spectral clustering} (HSC), for high-order clustering. The convergence guarantees and statistical optimality are established for the proposed procedure under a mild sub-Gaussian noise assumption. Under the Gaussian tensor block model, we completely characterize the statistical-computational trade-off for achieving high-order exact clustering based on three different signal-to-noise ratio regimes. The analysis relies on new techniques of high-order spectral perturbation analysis and a "singular-value-gap-free" error bound in tensor estimation, which are substantially different from the matrix spectral analyses in the literature. Finally, we show the merits of the proposed procedures via extensive experiments on both synthetic and real datasets.Comment: 65 page

    Recursive Importance Sketching for Rank Constrained Least Squares: Algorithms and High-order Convergence

    Full text link
    In this paper, we propose a new {\it \underline{R}ecursive} {\it \underline{I}mportance} {\it \underline{S}ketching} algorithm for {\it \underline{R}ank} constrained least squares {\it \underline{O}ptimization} (RISRO). As its name suggests, the algorithm is based on a new sketching framework, recursive importance sketching. Several existing algorithms in the literature can be reinterpreted under the new sketching framework and RISRO offers clear advantages over them. RISRO is easy to implement and computationally efficient, where the core procedure in each iteration is only solving a dimension reduced least squares problem. Different from numerous existing algorithms with locally geometric convergence rate, we establish the local quadratic-linear and quadratic rate of convergence for RISRO under some mild conditions. In addition, we discover a deep connection of RISRO to Riemannian manifold optimization on fixed rank matrices. The effectiveness of RISRO is demonstrated in two applications in machine learning and statistics: low-rank matrix trace regression and phase retrieval. Simulation studies demonstrate the superior numerical performance of RISRO
    corecore