32 research outputs found

    Hierarchy Composition GAN for High-fidelity Image Synthesis

    Full text link
    Despite the rapid progress of generative adversarial networks (GANs) in image synthesis in recent years, the existing image synthesis approaches work in either geometry domain or appearance domain alone which often introduces various synthesis artifacts. This paper presents an innovative Hierarchical Composition GAN (HIC-GAN) that incorporates image synthesis in geometry and appearance domains into an end-to-end trainable network and achieves superior synthesis realism in both domains simultaneously. We design an innovative hierarchical composition mechanism that is capable of learning realistic composition geometry and handling occlusions while multiple foreground objects are involved in image composition. In addition, we introduce a novel attention mask mechanism that guides to adapt the appearance of foreground objects which also helps to provide better training reference for learning in geometry domain. Extensive experiments on scene text image synthesis, portrait editing and indoor rendering tasks show that the proposed HIC-GAN achieves superior synthesis performance qualitatively and quantitatively.Comment: 11 pages, 8 figure

    Spatial-Aware GAN for Unsupervised Person Re-identification

    Full text link
    The recent person re-identification research has achieved great success by learning from a large number of labeled person images. On the other hand, the learned models often experience significant performance drops when applied to images collected in a different environment. Unsupervised domain adaptation (UDA) has been investigated to mitigate this constraint, but most existing systems adapt images at pixel level only and ignore obvious discrepancies at spatial level. This paper presents an innovative UDA-based person re-identification network that is capable of adapting images at both spatial and pixel levels simultaneously. A novel disentangled cycle-consistency loss is designed which guides the learning of spatial-level and pixel-level adaptation in a collaborative manner. In addition, a novel multi-modal mechanism is incorporated which is capable of generating images of different geometry views and augmenting training images effectively. Extensive experiments over a number of public datasets show that the proposed UDA network achieves superior person re-identification performance as compared with the state-of-the-art.Comment: Accepted to ICPR202

    Scene Text Synthesis for Efficient and Effective Deep Network Training

    Full text link
    A large amount of annotated training images is critical for training accurate and robust deep network models but the collection of a large amount of annotated training images is often time-consuming and costly. Image synthesis alleviates this constraint by generating annotated training images automatically by machines which has attracted increasing interest in the recent deep learning research. We develop an innovative image synthesis technique that composes annotated training images by realistically embedding foreground objects of interest (OOI) into background images. The proposed technique consists of two key components that in principle boost the usefulness of the synthesized images in deep network training. The first is context-aware semantic coherence which ensures that the OOI are placed around semantically coherent regions within the background image. The second is harmonious appearance adaptation which ensures that the embedded OOI are agreeable to the surrounding background from both geometry alignment and appearance realism. The proposed technique has been evaluated over two related but very different computer vision challenges, namely, scene text detection and scene text recognition. Experiments over a number of public datasets demonstrate the effectiveness of our proposed image synthesis technique - the use of our synthesized images in deep network training is capable of achieving similar or even better scene text detection and scene text recognition performance as compared with using real images.Comment: 8 pages, 5 figure

    General Neural Gauge Fields

    Full text link
    The recent advance of neural fields, such as neural radiance fields, has significantly pushed the boundary of scene representation learning. Aiming to boost the computation efficiency and rendering quality of 3D scenes, a popular line of research maps the 3D coordinate system to another measuring system, e.g., 2D manifolds and hash tables, for modeling neural fields. The conversion of coordinate systems can be typically dubbed as gauge transformation, which is usually a pre-defined mapping function, e.g., orthogonal projection or spatial hash function. This begs a question: can we directly learn a desired gauge transformation along with the neural field in an end-to-end manner? In this work, we extend this problem to a general paradigm with a taxonomy of discrete & continuous cases, and develop an end-to-end learning framework to jointly optimize the gauge transformation and neural fields. To counter the problem that the learning of gauge transformations can collapse easily, we derive a general regularization mechanism from the principle of information conservation during the gauge transformation. To circumvent the high computation cost in gauge learning with regularization, we directly derive an information-invariant gauge transformation which allows to preserve scene information inherently and yield superior performance.Comment: ICLR 202

    Regularized Vector Quantization for Tokenized Image Synthesis

    Full text link
    Quantizing images into discrete representations has been a fundamental problem in unified generative modeling. Predominant approaches learn the discrete representation either in a deterministic manner by selecting the best-matching token or in a stochastic manner by sampling from a predicted distribution. However, deterministic quantization suffers from severe codebook collapse and misalignment with inference stage while stochastic quantization suffers from low codebook utilization and perturbed reconstruction objective. This paper presents a regularized vector quantization framework that allows to mitigate above issues effectively by applying regularization from two perspectives. The first is a prior distribution regularization which measures the discrepancy between a prior token distribution and the predicted token distribution to avoid codebook collapse and low codebook utilization. The second is a stochastic mask regularization that introduces stochasticity during quantization to strike a good balance between inference stage misalignment and unperturbed reconstruction objective. In addition, we design a probabilistic contrastive loss which serves as a calibrated metric to further mitigate the perturbed reconstruction objective. Extensive experiments show that the proposed quantization framework outperforms prevailing vector quantization methods consistently across different generative models including auto-regressive models and diffusion models.Comment: Accepted to CVPR 202
    corecore