272 research outputs found
The record of Martian climatic history in cores and its preservation
Among the questions to be addressed by a Mars Sample Return Mission are the history of the Martian climate and the mechanisms that control the volatile cycles. Unfortunately, the evidence that bears most strongly on those issues lies in the volatile distribution in, and physical configuration of, a very delicate and volatile system: the uppermost Martian regolith. Some useful measurements to be made on returned samples of the regolith are identified, along with the many critical considerations in ensuring the usefulness of returned samples
Conceptual designs for in situ analysis of Mars soil
A goal of this research is to develop conceptual designs for instrumentation to perform in situ measurements of the Martian soil in order to determine the existence and nature of any reactive chemicals. Our approach involves assessment and critical review of the Viking biology results which indicated the presence of a soil oxidant, an investigation of the possible application of standard soil science techniques to the analysis of Martian soil, and a preliminary consideration of non-standard methods that may be necessary for use in the highly oxidizing Martian soil. Based on our preliminary analysis, we have developed strawman concepts for standard soil analysis on Mars, including pH, suitable for use on a Mars rover mission. In addition, we have devised a method for the determination of the possible strong oxidants on Mars
Atmospheric Condensation in the Mars Phoenix TECP and MET Data
A new calibration function for the humidity sensor in the Thermal and Electrical Conductivity Probe (TECP), a component of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) on the Phoenix Mars mission has been developed. The data is now cast in terms of Frost Point (T(sub f)) and some flight data, taken when the atmosphere is independently known to be saturated, is included in the calibration data set. Combined with data from the Meteorology Mast air temperature sensors, a very sensitive detection of atmospheric saturation becomes possible (Figure 1)
Absorption of the Martian regolith: Specific surface area and missing CO(sub 2)
For most estimates of available regolith and initial degassed CO(sub 2) inventories, it appears that any initial inventory must have been lost to space or incorporated into carbonates. Most estimates of the total available degassed CO(sub 2) inventory are only marginally sufficient to allow for a major early greenhouse effect. It is suggested that the requirements for greenhouse warming to produce old dessicated terrain would be greatly lessened if groundwater brines rather than rainfall were involved and if a higher internal gradient were involved to raise the water (brine) table, leading to more frequent sapping
Getting water from the water of hydration on Mars
Both Viking landers found evidence of water in small concentration in the soils of Mars. Using the gas chromatograph mass spectrometer the soil samples on Mars were heated to 500 C to release the water. This result lead researchers to believe that the water in the soil of Mars was tightly bound in a hydration state. In the laboratory several Mars analog soils and a few bench mark soils were run through a microwave to determine the amount of water released using this method. The results suggest that sufficient water can be obtained using this method to augment the activities of a human base on Mars
The role of regolith adsorption in the transition from early to late Mars climate
Researchers reexamined radiative transfer models of early Mars that were advanced to show the existance of a greenhouse effect. These models were reexamined with regard to the effect that regolith adsorption may have had. It is argued that while the precipitation of carbonates has probably been an important process during Mars history, the rates at which this process could have taken place under early Mars conditions would have dropped sharply once liquid water was fairly scarce. Furthermore, conditions under which liquid water was available may have involved efficient recycling of carbonate so that steady state conditions rather than irreversible CO2 removal prevailed. In contrast, the growth of regolith surface area demands corresponding and predictable CO2 removal from the atmosphere-cap system and is fully capable of terminating any enhanced temperature regime on early Mars in the absence of any other effects
Is regolith absorbtion the explanation for the transition from early to present Mars climate
Experimental data is presented for CO2 adsorption on palagonites (now thought to provide the most acceptable spectral match to Mars weathering products). When corrected for great differences in specific surface area, the adsorptive behavior exhibited by palogonites, nontronite, and basalt with respect to CO2 can be (approx.) described by the same generic equation. Using this relationship normalized to a Mars soil surface area, and the dependence of subsurface temperatures on latitude and depth, the current inventory of regolith absorbed CO2 was estimated
Melting in Martian Snowbanks
Precipitation as snow is an emerging paradigm for understanding water flow on Mars, which gracefully resolves many outstanding uncertainties in climatic and geomorphic interpretation. Snowfall does not require a powerful global greenhouse to effect global precipitation. It has long been assumed that global average temperatures greater than 273K are required to sustain liquid water at the surface via rainfall and runoff. Unfortunately, the best greenhouse models to date predict global mean surface temperatures early in Mars' history that differ little from today's, unless exceptional conditions are invoked. Snowfall however, can occur at temperatures less than 273K; all that is required is saturation of the atmosphere. At global temperatures lower than 273K, H2O would have been injected into the atmosphere by impacts and volcanic eruptions during the Noachian, and by obliquity-driven climate oscillations more recently. Snow cover can accumulate for a considerable period, and be available for melting during local spring and summer, unless sublimation rates are sufficient to remove the entire snowpack. We decided to explore the physics that controls the melting of snow in the high-latitude regions of Mars to understand the frequency and drainage of snowmelt in the high martian latitudes
Simultaneous laboratory measurements of CO2 and H2O adsorption on palagonite: Implications for the Martian climate and volatile reservoir
We are measuring the simultaneous adsorption of H2O and CO2 on palagonite materials in order to improve the formulation of climate models for Mars. We report on the initial co-adsorption data. Models of the Martian climate and volatile inventory indicate that the regolith serves as one of the primary reservoirs of outgassed volatiles and that it exchanges H2O and CO2 with the atmosphere in response to changes in insolation associated with astronomical cycles. Physical adsorbate must exist on the surfaces of the cold particulates that constitute the regolith, and the size of that reservoir can be assessed through laboratory measurements of adsorption on terrestrial analogs. Many studies of the independent adsorption of H2O and CO2 on Mars analog were made and appear in the literature. Empirical expressions that relate the adsorptive coverage of each gas to the temperature of the soil and partial pressure have been derived based on the laboratory data. Numerical models incorporate these adsorption isotherms into climatic models, which predict how the adsorptive coverage of the regolith and hence, the pressure of each gas in the atmosphere will vary as the planet moves through its orbit. These models suggest that the regolith holds several tens to hundreds of millibars of CO2 and that during periods of high obliquity warming of the high-latitude regolith will result in desorption of the CO2, and a consequent increase in atmospheric pressure. At lower obliquities, the caps cool and the equator warms forcing the desorption of several tens of millibars of CO2, which is trapped into quasipermanent CO2 caps
Relative Humidity on Mars: New Results From the Phoenix TECP Sensor
In situ measurements of relative humidity (RH) on Mars have only been performed by the Phoenix (PHX) and Mars Science Laboratory (MSL) missions. Here we present results of our recalibration of the PHX thermal and electrical conductivity probe (TECP) RH sensor. This recalibration was conducted using a TECP engineering model subjected to the full range of environmental conditions at the PHX landing site in the Michigan Mars Environmental Chamber. The experiments focused on the warmest and driest conditions (daytime) because they were not covered in the original calibration (Zent et al., 2010, https://doi.org/10.1029/2009JE003420) and previous recalibration (Zent et al., 2016, https://doi.org/10.1002/2015JE004933). In nighttime conditions, our results are in excellent agreement with the previous 2016 recalibration, while in daytime conditions, our results show larger water vapor pressure values. We obtain vapor pressure values in the range ~0.005–1.4 Pa, while Zent et al. (2016, https://doi.org/10.1002/2015JE004933) obtain values in the range ~0.004–0.4 Pa. Our higher daytime values are in better agreement with independent estimates from the ground by the PHX Surface Stereo Imager instrument and from orbit by Compact Reconnaissance Imaging Spectrometer for Mars. Our results imply larger day‐to‐night ratios of water vapor pressure at PHX compared to MSL, suggesting a stronger atmosphere‐regolith interchange in the Martian arctic than at lower latitudes. Further, they indicate that brine formation at the PHX landing site via deliquescence can be achieved only temporarily between midnight and 6 a.m. on a few sols. The results from our recalibration are important because they shed light on the near‐surface humidity environment on Mars.Key PointsWe have recalibrated the relative humidity sensor of the Mars Phoenix landerWe obtain water vapor pressure values in the range ~0.005–1.4 Pa, while in previous recalibrations, values in the range ~0.004–0.4 PaOur results show a two‐order‐of‐magnitude diurnal variation of water vapor pressure, suggesting a strong atmosphere‐regolith interchangePlain Language SummaryWe present our recalibration of Phoenix’s humidity sensor. This recalibration was conducted with a copy of the sensor subjected to the environmental conditions at the Phoenix landing site. Our experiments focus on the warmest and driest conditions because they were not covered in previous calibrations. Our recalibration shows daytime water content values one order of magnitude larger than those in the previous calibration. At nighttime conditions, our results are in excellent agreement with the previous calibration. Our higher daytime values are in better agreement with independent estimates from the ground, and from orbit. Our results imply larger diurnal variations of water content at Phoenix compared to Curiosity, suggesting a stronger atmosphere‐soil interchange in the Martian arctic than at lower latitudes. Further, they indicate that environmental conditions favorable for the formation of saline solutions (brine) are only achieved temporarily between midnight and 6 a.m. on a few Martian days. The results from our recalibration are important because measurements of humidity on the Martian surface are needed to shed light on the local and global water cycle of Mars, and so far, only the Phoenix mission in the arctic region and the Curiosity rover at equatorial latitudes have performed such measurements.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153252/1/jgre21230.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153252/2/jgre21230_am.pd
- …