47 research outputs found
Noninvasive vaccination against infectious diseases
The development of a successful vaccine, which should elicit a combination of humoral and cellular responses to control or prevent infections, is the first step in protecting against infectious diseases. A vaccine may protect against bacterial, fungal, parasitic, or viral infections in animal models, but to be effective in humans there are some issues that should be considered, such as the adjuvant, the route of vaccination, and the antigen-carrier system. While almost all licensed vaccines are injected such that inoculation is by far the most commonly used method, injection has several potential disadvantages, including pain, cross contamination, needlestick injury, under- or overdosing, and increased cost. It is also problematic for patients from rural areas of developing countries, who must travel to a hospital for vaccine administration. Noninvasive immunizations, including oral, intranasal, and transcutaneous administration of vaccines, can reduce or eliminate pain, reduce the cost of vaccinations, and increase their safety. Several preclinical and clinical studies as well as experience with licensed vaccines have demonstrated that noninvasive vaccine immunization activates cellular and humoral immunity, which protect against pathogen infections. Here we review the development of noninvasive immunization with vaccines based on live attenuated virus, recombinant adenovirus, inactivated virus, viral subunits, virus-like particles, DNA, RNA, and antigen expression in rice in preclinical and clinical studies. We predict that noninvasive vaccine administration will be more widely applied in the clinic in the near future. © 2018, © 2018 The Author(s). Published with license by Taylor and Francis. © 2018, © Zhichao Zheng, Diana Diaz-Arévalo, Hongbing Guan, and Mingtao Zeng
Let Storytelling Tell Vivid Stories: An Expressive and Fluent Multimodal Storyteller
Storytelling aims to generate reasonable and vivid narratives based on an
ordered image stream. The fidelity to the image story theme and the divergence
of story plots attract readers to keep reading. Previous works iteratively
improved the alignment of multiple modalities but ultimately resulted in the
generation of simplistic storylines for image streams. In this work, we propose
a new pipeline, termed LLaMS, to generate multimodal human-level stories that
are embodied in expressiveness and consistency. Specifically, by fully
exploiting the commonsense knowledge within the LLM, we first employ a sequence
data auto-enhancement strategy to enhance factual content expression and
leverage a textual reasoning architecture for expressive story generation and
prediction. Secondly, we propose SQ-Adatpter module for story illustration
generation which can maintain sequence consistency. Numerical results are
conducted through human evaluation to verify the superiority of proposed LLaMS.
Evaluations show that LLaMS achieves state-of-the-art storytelling performance
and 86% correlation and 100% consistency win rate as compared with previous
SOTA methods. Furthermore, ablation experiments are conducted to verify the
effectiveness of proposed sequence data enhancement and SQ-Adapter
Uplink Non-Orthogonal Multiple Access with Finite-Alphabet Inputs
This paper focuses on the non-orthogonal multiple access (NOMA) design for a
classical two-user multiple access channel (MAC) with finite-alphabet inputs.
We consider practical quadrature amplitude modulation (QAM) constellations at
both transmitters, the sizes of which are assumed to be not necessarily
identical. We propose to maximize the minimum Euclidean distance of the
received sum-constellation with a maximum likelihood (ML) detector by adjusting
the scaling factors (i.e., instantaneous transmitted powers and phases) of both
users. The formulated problem is a mixed continuous-discrete optimization
problem, which is nontrivial to resolve in general. By carefully observing the
structure of the objective function, we discover that Farey sequence can be
applied to tackle the formulated problem. However, the existing Farey sequence
is not applicable when the constellation sizes of the two users are not the
same. Motivated by this, we define a new type of Farey sequence, termed punched
Farey sequence. Based on this, we manage to achieve a closed-form optimal
solution to the original problem by first dividing the entire feasible region
into a finite number of Farey intervals and then taking the maximum over all
the possible intervals. The resulting sum-constellation is proved to be a
regular QAM constellation of a larger size. Moreover, the superiority of NOMA
over time-division multiple access (TDMA) in terms of minimum Euclidean
distance is rigorously proved. Furthermore, the optimal rate allocation among
the two users is obtained in closed-form to further maximize the obtained
minimum Euclidean distance of the received signal subject to a total rate
constraint. Finally, simulation results are provided to verify our theoretical
analysis and demonstrate the merits of the proposed NOMA over existing
orthogonal and non-orthogonal designs.Comment: Submitted for possible journal publicatio
Novel Type of Streptococcus pneumoniae Causing Multidrug-Resistant Acute Otitis Media in Children
A new multidrug-resistant strain of serotype 19A has been characterized in upstate New York
A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms
We describe a genetic variation map for the chicken genome containing 2.8 million single-nucleotide polymorphisms ( SNPs). This map is based on a comparison of the sequences of three domestic chicken breeds ( a broiler, a layer and a Chinese silkie) with that of their wild ancestor, red jungle fowl. Subsequent experiments indicate that at least 90% of the variant sites are true SNPs, and at least 70% are common SNPs that segregate in many domestic breeds. Mean nucleotide diversity is about five SNPs per kilobase for almost every possible comparison between red jungle fowl and domestic lines, between two different domestic lines, and within domestic lines - in contrast to the notion that domestic animals are highly inbred relative to their wild ancestors. In fact, most of the SNPs originated before domestication, and there is little evidence of selective sweeps for adaptive alleles on length scales greater than 100 kilobases
Detoxified Lethal Toxin as a Potential Mucosal Vaccine against Anthrax▿
The nontoxic mutant lethal factor (mLF; which has the E687C substitution) and functional protective antigen (PA63) of Bacillus anthracis were evaluated for their use as mucosal vaccines against anthrax in A/J mice. Intranasal vaccination of three doses of 30 μg of mLF or 60 μg of PA63 elicited significant serum and mucosal antibody responses, with anthrax lethal toxin-neutralizing titers of 40 and 60 in immune sera, respectively. However, only 30% and 60% of the vaccinated animals in the two groups could survive a challenge with 100 times the 50% lethal dose of B. anthracis Sterne spores, respectively. In contrast, vaccination with three doses of the combination of 30 μg of mLF and 60 μg of PA63, the detoxified lethal toxin, elicited antibody responses against LF and PA significantly higher than those elicited after vaccination with mLF or PA63 individually by use of the same dose and schedule. Vaccination with the detoxified lethal toxin resulted in significantly higher lethal toxin-neutralizing antibody titers in sera (titer, 90). Animals vaccinated with three doses of the detoxified lethal toxin were completely protected against the spore challenge. The data suggest that mLF and PA63 have a mutual enhancement effect for evoking systemic and mucosal immune responses and that the detoxified lethal toxin can be used as an efficient mucosal vaccine against anthrax
Noninvasive vaccination against infectious diseases
The development of a successful vaccine, which should elicit a combination of humoral and cellular responses to control or prevent infections, is the first step in protecting against infectious diseases. A vaccine may protect against bacterial, fungal, parasitic, or viral infections in animal models, but to be effective in humans there are some issues that should be considered, such as the adjuvant, the route of vaccination, and the antigen-carrier system. While almost all licensed vaccines are injected such that inoculation is by far the most commonly used method, injection has several potential disadvantages, including pain, cross contamination, needlestick injury, under- or overdosing, and increased cost. It is also problematic for patients from rural areas of developing countries, who must travel to a hospital for vaccine administration. Noninvasive immunizations, including oral, intranasal, and transcutaneous administration of vaccines, can reduce or eliminate pain, reduce the cost of vaccinations, and increase their safety. Several preclinical and clinical studies as well as experience with licensed vaccines have demonstrated that noninvasive vaccine immunization activates cellular and humoral immunity, which protect against pathogen infections. Here we review the development of noninvasive immunization with vaccines based on live attenuated virus, recombinant adenovirus, inactivated virus, viral subunits, virus-like particles, DNA, RNA, and antigen expression in rice in preclinical and clinical studies. We predict that noninvasive vaccine administration will be more widely applied in the clinic in the near future
Noninvasive vaccination against infectious diseases
The development of a successful vaccine, which should elicit a combination of humoral and cellular responses to control or prevent infections, is the first step in protecting against infectious diseases. A vaccine may protect against bacterial, fungal, parasitic, or viral infections in animal models, but to be effective in humans there are some issues that should be considered, such as the adjuvant, the route of vaccination, and the antigen-carrier system. While almost all licensed vaccines are injected such that inoculation is by far the most commonly used method, injection has several potential disadvantages, including pain, cross contamination, needlestick injury, under- or overdosing, and increased cost. It is also problematic for patients from rural areas of developing countries, who must travel to a hospital for vaccine administration. Noninvasive immunizations, including oral, intranasal, and transcutaneous administration of vaccines, can reduce or eliminate pain, reduce the cost of vaccinations, and increase their safety. Several preclinical and clinical studies as well as experience with licensed vaccines have demonstrated that noninvasive vaccine immunization activates cellular and humoral immunity, which protect against pathogen infections. Here we review the development of noninvasive immunization with vaccines based on live attenuated virus, recombinant adenovirus, inactivated virus, viral subunits, virus-like particles, DNA, RNA, and antigen expression in rice in preclinical and clinical studies. We predict that noninvasive vaccine administration will be more widely applied in the clinic in the near future. © 2018, © 2018 The Author(s). Published with license by Taylor and Francis. © 2018, © Zhichao Zheng, Diana Diaz-Arévalo, Hongbing Guan, and Mingtao Zeng
A new species of Batrachuperus from northwestern China
Volume: 9Start Page: 6End Page: