5 research outputs found

    Prompt-based Alignment of Headlines and Images Using OpenCLIP

    Get PDF
    In this paper, we describe how we leverage OpenCLIP to generate automated image recommendations for online news articles for the MediaEval 2023 NewsImages task. By exploring different text prompting techniques, a total of five retrieval approaches were devised. Results show, however, that the best performing approach is an unmodified CLIP version with the raw article headline as input. We reflect on this finding and its implication for future NewsImages tasks

    Recurrent Temporal Revision Graph Networks

    Full text link
    Temporal graphs offer more accurate modeling of many real-world scenarios than static graphs. However, neighbor aggregation, a critical building block of graph networks, for temporal graphs, is currently straightforwardly extended from that of static graphs. It can be computationally expensive when involving all historical neighbors during such aggregation. In practice, typically only a subset of the most recent neighbors are involved. However, such subsampling leads to incomplete and biased neighbor information. To address this limitation, we propose a novel framework for temporal neighbor aggregation that uses the recurrent neural network with node-wise hidden states to integrate information from all historical neighbors for each node to acquire the complete neighbor information. We demonstrate the superior theoretical expressiveness of the proposed framework as well as its state-of-the-art performance in real-world applications. Notably, it achieves a significant +9.6% improvement on averaged precision in a real-world Ecommerce dataset over existing methods on 2-layer models
    corecore