18 research outputs found

    An experimental and computational IR and hybrid DFT-D3 study of the conformations of l-lactic and acrylic acid: new insight into the dehydration mechanism of lactic acid to acrylic acid

    Get PDF
    We have studied using hybrid Density Functional Theory (DFT) with an aug-cc-pVTZ basis set and D3 dispersion corrections the intra-molecular hydrogen bond of L-lactic acid and L-lactic-acid analogs with the hydroxyl group on the alpha carbon atom substituted by α-XH (where X = S, Se, Te) as well as the conformations of acrylic acid. The results show that there are three types of intramolecular hydrogen bonds that can form only when α-OH is present, whereas other less electronegative functional groups such as –SH, –SeH and –TeH do not exhibit the formation of an intramolecular H-bond. We show that the intra-molecular H-bond formed between the alpha-OH hydrogen and the COOH carbonyl oxygen would enhance the rate of nucleophilic substitution of alpha-OH at the K+ sites in the previously suggested dehydration mechanism of L-lactic to acrylic acids. We find that a temperature range between 190 and 210 °C would be optimum to maximise the rate of nucleophilic substitution of the alpha-OH group at the potassium sites during the dehydration mechanism of L-lactic acid to acrylic acid. Additionally, our hybrid-DFT simulation of the infrared spectrum of the various conformers shows that the lowest energy conformer can be identified by a single vibrational band at 3734 cm−1 whereas for the other conformers, this vibrational band is split with Δν that ranges between 6 cm−1 and 176 cm−1. We also find that the various conformers of acrylic acid can be identified by a double peak for the C[double bond, length as m-dash]O and O–H vibrations, which have Δν′ and Δν′′ values of 24 and 42 cm−1, respectively. This computational study is useful for spectroscopic experimental efforts that try to identify the various conformers of L-lactic acid and acrylic acid and to gain mechanistic insight into the dehydration mechanism over K substituted NaY zeolites

    Low-T Mechanisms of Ammonia Synthesis on Co3Mo3N

    Get PDF
    Dispersion-corrected periodic DFT calculations have been applied to elucidate the Langmuir–Hinshelwood (dissociative) and an Eley–Rideal/Mars–van Krevelen (associative) mechanism for ammonia synthesis over Co3Mo3N surfaces, in the presence of surface defects. Comparison of the two distinct mechanisms clearly suggests that apart from the conventional dissociative mechanism, there is another mechanism that proceeds via hydrazine and diazane intermediates that are formed by Eley–Rideal type chemistry, where hydrogen reacts directly with surface activated nitrogen, in order to form ammonia at considerably milder conditions. This result clearly suggests that via surface defects ammonia synthesis activity can be enhanced at milder conditions on one of the most active catalysts for ammonia synthesis

    Nitrogen Activation in a Mars-van Krevelen Mechanism for Ammonia Synthesis on Co3Mo3N

    Get PDF
    Co3Mo3N is one of the most active catalysts for ammonia synthesis; however, little is known about the atomistic details of N2 adsorption and activation. Here we examine whether N2 can adsorb and activate at nitrogen surface vacancies. We have identified the most favorable sites for surface nitrogen vacancy formation and have calculated vacancy formation free energies (and concentrations) taking into account vacancy configurational entropy and the entropy of N2 at temperature and pressure conditions relevant to ammonia synthesis (380–550 °C, 100 atm) via a semiempirical approach. We show that 3-fold hollow bound nitrogen-containing (111)-surfaces have surprisingly high concentrations (1.6 × 1016 to 3.7 × 1016 cm–2) of nitrogen vacancies in the temperature range for ammonia synthesis. It is shown that these vacancy sites can adsorb and activate N2 demonstrating the potential of a Mars–van Krevelen type mechanism on Co3Mo3N. The catalytically active surface is one where 3f-hollow-nitrogens are bound to the molybdenum framework with a hexagonal array of embedded Co8 cobalt nanoclusters. We find that the vacancy-formation energy (VFE) combined with the adsorption energy can be used as a descriptor in the screening of materials that activate doubly and triply bonded molecules that are bound end-on at surface vacancies

    A comparative analysis of the mechanisms of ammonia synthesis on various catalysts using density functional theory

    Get PDF
    In this review, we present the recent progress in ammonia synthesis research using density functional theory (DFT) calculations on various industrial catalysts, metal nitrides and nano-cluster-supported catalysts. The mechanism of ammonia synthesis on the industrial Fe catalyst is generally accepted to be a dissociative mechanism. We have recently found, using DFT techniques, that on Co_{3}Mo_{3}N (111) surfaces, an associative mechanism in the synthesis of ammonia can offer a new low-energy pathway that was previously unknown. In particular, we have shown that metal nitrides that are also known to have high activity for ammonia synthesis can readily form nitrogen vacancies which can activate dinitrogen, thereby promoting the associative mechanism. These fundamental studies suggest that a promising route to the discovery of low-temperature ammonia synthesis catalysts will be to identify systems that proceed via the associative mechanism, which is closer to the nitrogen-fixation mechanism occurring in nitrogenases

    DFT-D3 study of H-2 and N-2 chemisorption over cobalt promoted Ta3N5-(100),(010) and (001) surfaces

    Get PDF
    The reactants for ammonia synthesis have been studied, employing density functional theory (DFT), with respect to their adsorption on tantalum nitride surfaces. The adsorption of nitrogen was found to be mostly molecular and non-activated with side-on, end-on and tilt configurations. At bridging nitrogen sites (Ta–N–Ta) it results in an azide functional group formation with a formation energy of 205 kJ mol−1. H2 was found also to chemisorb molecularly with an adsorption energy in the range −81 to −91 kJ mol−1. At bridging nitrogen sites it adsorbs dissociatively forming >NH groups with an exothermic formation energy of −175 kJ mol−1 per H2. The nitrogen vacancy formation energies were relatively high compared to other metal nitrides found to be 2.89 eV, 2.32 eV and 1.95 eV for plain, surface co-adsorbed cobalt and sub-surface co-adsorbed cobalt Ta3N5-(010). Co-adsorption of cobalt was found to occur mostly at nitrogen rich sites of the surface with an adsorption energy that ranged between −200 to −400 kJ mol−1. The co-adsorption of cobalt was found to enhance the dissociation of molecular hydrogen on the surface of Ta3N5. The studies offer significant new insight with respect to the chemistry of N2 and H2 with tantalum nitride surfaces in the presence of cobalt promoters

    The potential of manganese nitride based materials as nitrogen transfer reagents for nitrogen chemical looping

    Get PDF
    A systematic study was carried out to investigate the potential of manganese nitride related materials for ammonia production. A-Mn-N (A = Fe, Co, K, Li) materials were synthesised by nitriding their oxide counterparts at low temperature using NaNH2 as a source of reactive nitrogen. The reactivity of lattice nitrogen was assessed using ammonia synthesis as a model reaction. In the case of Mn3N2, limited reactivity was observed and only 3.1% of the available lattice nitrogen was found to be reactive towards hydrogen to yield ammonia while most of the lattice nitrogen was lost as N2. However, the presence of a co-metal played a key role in shaping the nitrogen transfer properties of manganese nitride and impacted strongly upon its reactivity. In particular, doping manganese nitride with low levels of lithium resulted in enhanced reactivity at low temperature. In the case of the Li-Mn-N system, the fraction of ammonia formed at 400 °C corresponded to the reaction of 15% of the total available lattice nitrogen towards hydrogen. Li-Mn-N presented high thermochemical stability after reduction with hydrogen which limited the regeneration step using N2 from the gas phase. However, the results presented herein demonstrate the Li-Mn-N system to be worthy of further attention

    Combination of theoretical and in situ experimental investigations of the role of lithium dopant in manganese nitride: a two-stage reagent for ammonia synthesis

    Get PDF
    Manganese nitride related materials are of interest as two-stage reagents for ammonia synthesis via nitrogen chemical looping. However, unless they are doped with a co-cation, manganese nitrides are thermochemically stable and a high temperature is required to produce ammonia under reducing conditions, thereby hindering their use as nitrogen transfer materials. Nevertheless, when lithium is used as dopant, ammonia generation can be observed at a reaction temperature as low as 300 °C. In order to develop strategies for the improvement of the reactivity of nitride materials in the context of two-stage reagents, it is necessary to understand the intrinsic role of the dopant in the mechanism of ammonia synthesis. To this end, we have investigated the role of lithium in increasing the manganese nitride reactivity by in situ neutron diffraction studies and N2 and H2 isotopic exchange reactions supplemented by DFT calculations

    Nitrogen transfer properties in tantalum nitride based materials

    Get PDF
    Ta3-xMxNy (M=Re, Fe, Co; x=0, 0.25, 0.5, 1) materials with different microstructural features (e.g. surface area) were successfully prepared using different synthesis techniques. The dependence of nitrogen transfer properties upon tantalum nitride microstructure and its chemical composition was evaluated using the ammonia synthesis with a H2/Ar feedstream (a reaction involving lattice nitrogen transfer). It was shown that nitrogen reactivity for tantalum nitride is more dominated by lattice nitrogen stability rather than microstructural properties. In the case of non-doped tantalum nitride, only a limited improvement of reactivity with enhanced surface area was observed which demonstrates the limited impact of microstructure upon reactivity. However, the nature of the transition metal dopant as well as its content was observed to play a key role in the nitrogen transfer properties of tantalum nitride and to impact strongly upon its reactivity. In fact, doping tantalum nitride with low levels of Co resulted in enhanced reactivity at lower temperature

    The integration of experiment and computational modelling in heterogeneously catalysed ammonia synthesis over metal nitrides

    Get PDF
    In this perspective we present recent experimental and computational progress in catalytic ammonia synthesis research on metal nitrides involving a combined approach. On this basis, it suggested that the consideration of nitrogen vacancies in the synthesis of ammonia can offer new low energy pathways that were previously unknown. We have shown that metal nitrides that are also known to have high activity for ammonia synthesis can readily form nitrogen vacancies on their surfaces. These vacancies adsorb dinitrogen much more strongly than the defect-free surfaces and can efficiently activate the strong N-N triple bond. These fundamental studies suggest that heterogeneously catalysed ammonia synthesis over metal nitrides is strongly affected by bulk and surface defects and that further progress in the discovery of low temperature catalysts relies on more careful consideration of nitrogen vacancies. The potential occurrence of an associative pathway in the case of the Co3Mo3N catalytic system provides a possible link with enzymatic catalysis, which will be of importance in the design of heterogeneous catalytic systems operational under process conditions of reduced severity which are necessary for the development of localised facilities for the production of more sustainable "green" ammonia

    The sphere-in-contact model of carbon materials

    Get PDF
    A sphere-in-contact model is presented that is used to build physical models of carbon materials such as graphite, graphene, carbon nanotubes and fullerene. Unlike other molecular models, these models have correct scale and proportions because the carbon atoms are represented by their atomic radius, in contrast to the more commonly used space-fill models, where carbon atoms are represented by their van der Waals radii. Based on a survey taken among 65 undergraduate chemistry students and 28 PhD/postdoctoral students with a background in molecular modeling, we found misconceptions arising from incorrect visualization of the size and location of the electron density located in carbon materials. Based on analysis of the survey and on a conceptual basis we show that the sphere-in-contact model provides an improved molecular representation of the electron density of carbon materials compared to other molecular models commonly used in science textbooks (i.e., wire-frame, ball-and-stick, space-fill). We therefore suggest that its use in chemistry textbooks along with the ball-and-stick model would significantly enhance the visualization of molecular structures according to their electron density
    corecore