53 research outputs found
Asymmetric Biotic Interactions and Abiotic Niche Differences Revealed by a Dynamic Joint Species Distribution Model
A speciesâ distribution and abundance are determined by abiotic conditions and biotic interactions with other species in the community. Most species distribution models correlate the occurrence of a single species with environmental variables only, and leave out biotic interactions. To test the importance of biotic interactions on occurrence and abundance, we compared a multivariate spatiotemporal model of the joint abundance of two invasive insects that share a host plant, hemlock woolly adelgid (HWA; Adelges tsugae) and elongate hemlock scale (EHS; Fiorina externa), to independent models that do not account for dependence among coâoccurring species. The joint model revealed that HWA responded more strongly to abiotic conditions than EHS. Additionally, HWA appeared to predispose stands to subsequent increase of EHS, but HWA abundance was not strongly dependent on EHS abundance. This study demonstrates how incorporating spatial and temporal dependence into a species distribution model can reveal the dependence of a speciesâ abundance on other species in the community. Accounting for dependence among coâoccurring species with a joint distribution model can also improve estimation of the abiotic niche for species affected by interspecific interactions
Towards mapping biodiversity from above: Can fusing lidar and hyperspectral remote sensing predict taxonomic, functional, and phylogenetic tree diversity in temperate forests?
Aim: Rapid global change is impacting the diversity of tree species and essential ecosystem functions and services of forests. It is therefore critical to understand and predict how the diversity of tree species is spatially distributed within and among forest biomes. Satellite remote sensing platforms have been used for decades to map forest structure and function but are limited in their capacity to monitor change by their relatively coarse spatial resolution and the complexity of scales at which different dimensions of biodiversity are observed in the field. Recently, airborne remote sensing platforms making use of passive high spectral resolution (i.e., hyperspectral) and active lidar data have been operationalized, providing an opportunity to disentangle how biodiversity patterns vary across space and time from field observations to larger scales. Most studies to date have focused on single sites and/or one sensor type; here we ask how multiple sensor types from the National Ecological Observatory Networkâs Airborne Observation Platform (NEON AOP) perform across multiple sites in a single biome at the NEON field plot scale (i.e., 40 m Ă 40 m).Location: Eastern USA.Time period: 2017â 2018.Taxa studied: Trees.Methods: With a fusion of hyperspectral and lidar data from the NEON AOP, we as-sess the ability of high resolution remotely sensed metrics to measure biodiversity variation across eastern US temperate forests. We examine how taxonomic, functional, and phylogenetic measures of alpha diversity vary spatially and assess to what degree remotely sensed metrics correlate with in situ biodiversity metrics.Results: Models using estimates of forest function, canopy structure, and topographic diversity performed better than models containing each category alone. Our results show that canopy structural diversity, and not just spectral reflectance, is critical to predicting biodiversity.Main conclusions: We found that an approach that jointly leverages spectral properties related to leaf and canopy functional traits and forest health, lidar derived estimates of forest structure, fine-resolution topographic diversity, and careful consideration of biogeographical differences within and among biomes is needed to accurately map biodiversity variation from above
Potential ecological impacts of climate intervention by reflecting sunlight to cool Earth
As the effects of anthropogenic climate change become more severe, several approaches for deliberate climate intervention to reduce or stabilize Earthâs surface temperature have been proposed. Solar radiation modification (SRM) is one potential approach to partially counteract anthropogenic warming by reflecting a small proportion of the incoming solar radiation to increase Earthâs albedo. While climate science research has focused on the predicted climate effects of SRM, almost no studies have investigated the impacts that SRM would have on ecological systems. The impacts and risks posed by SRM would vary by implementation scenario, anthropogenic climate effects, geographic region, and by ecosystem, community, population, and organism. Complex interactions among Earthâs climate system and living systems would further affect SRM impacts and risks. We focus here on stratospheric aerosol intervention (SAI), a well-studied and relatively feasible SRM scheme that is likely to have a large impact on Earthâs surface temperature. We outline current gaps in knowledge about both helpful and harmful predicted effects of SAI on ecological systems. Desired ecological outcomes might also inform development of future SAI implementation scenarios. In addition to filling these knowledge gaps, increased collaboration between ecologists and climate scientists would identify a common set of SAI research goals and improve the communication about potential SAI impacts and risks with the public. Without this collaboration, forecasts of SAI impacts will overlook potential effects on biodiversity and ecosystem services for humanity
Recommended from our members
Invasive Congeners Differ in Successional Impacts across Space and Time
Invasive species can alter the succession of ecological communities because they are
often adapted to the disturbed conditions that initiate succession. The extent to which this
occurs may depend on how widely they are distributed across environmental gradients and
how long they persist over the course of succession. We focus on plant communities of the
USA Pacific Northwest coastal dunes, where disturbance is characterized by changes in
sediment supply, and the plant community is dominated by two introduced grasses â the
long-established Ammophila arenaria and the currently invading A. breviligulata. Previous
studies showed that A. breviligulata has replaced A. arenaria and reduced community diversity.
We hypothesize that this is largely due to A. breviligulata occupying a wider distribution
across spatial environmental gradients and persisting in later-successional habitat than A.
arenaria. We used multi-decadal chronosequences and a resurvey study spanning 2 decades
to characterize distributions of both species across space and time, and investigated
how these distributions were associated with changes in the plant community. The invading
A. breviligulata persisted longer and occupied a wider spatial distribution across the dune,
and this corresponded with a reduction in plant species richness and native cover. Furthermore,
backdunes previously dominated by A. arenaria switched to being dominated by A.
breviligulata, forest, or developed land over a 23-yr period. Ammophila breviligulata likely invades
by displacing A. arenaria, and reduces plant diversity by maintaining its dominance
into later successional backdunes. Our results suggest distinct roles in succession, with A.
arenaria playing a more classically facilitative role and A. breviligulata a more inhibitory role.
Differential abilities of closely-related invasive species to persist through time and occupy
heterogeneous environments allows for distinct impacts on communities
during succession
Recommended from our members
Biophysical feedback mediates effects of invasive grasses on coastal dune shape
Vegetation at the aquaticâterrestrial interface can alter landscape features through its growth and interactions with sediment and fluids. Even similar species may impart different effects due to variation in their interactions and feedbacks with the environment. Consequently, replacement of one engineering species by another can cause significant change in the physical environment. Here we investigate the species-specific ecological mechanisms influencing the geomorphology of U.S. Pacific Northwest coastal dunes. Over the last century, this system changed from open, shifting sand dunes with sparse vegetation (including native beach grass, Elymus mollis), to densely vegetated continuous foredune ridges resulting from the introduction and subsequent invasions of two nonnative grass species (Ammophila arenaria and Ammophila breviligulata), each of which is associated with different dune shapes and sediment supply rates along the coast. Here we propose a biophysical feedback responsible for differences in dune shape, and we investigate two, non-mutually exclusive ecological mechanisms for these differences: (1) species differ in their ability to capture sand and (2) species differ in their growth habit in response to sand deposition. To investigate sand capture, we used a moveable bed wind tunnel experiment and found that increasing tiller density increased sand capture efficiency and that, under different experimental densities, the native grass had higher sand capture efficiency compared to the Ammophila congeners. However, the greater densities of nonnative grasses under field conditions suggest that they have greater potential to capture more sand overall. We used a mesocosm experiment to look at plant growth responses to sand deposition and found that, in response to increasing sand supply rates, A. arenaria produced higher-density vertical tillers (characteristic of higher sand capture efficiency), while A. breviligulata and E. mollis responded with lower-density lateral tiller growth (characteristic of lower sand capture efficiency). Combined, these experiments provide evidence for a species-specific effect on coastal dune shape. Understanding how dominant ecosystem engineers, especially nonnative ones, differ in their interactions with abiotic factors is necessary to better parameterize coastal vulnerability models and inform management practices related to both coastal protection ecosystem services and ecosystem restoration.Keywords: invasive species, ecosystem engineer, wind tunnel, sediment deposition, foredune, Elymus mollis, Ammophila arenaria, ecomorphology, ecosystem service, geomorphology, sediment transport, Ammophila breviligulat
Towards connecting biodiversity and geodiversity across scales with satellite remote sensing
Issue
Geodiversity (i.e., the variation in Earth\u27s abiotic processes and features) has strong effects on biodiversity patterns. However, major gaps remain in our understanding of how relationships between biodiversity and geodiversity vary over space and time. Biodiversity data are globally sparse and concentrated in particular regions. In contrast, many forms of geodiversity can be measured continuously across the globe with satellite remote sensing. Satellite remote sensing directly measures environmental variables with grain sizes as small as tens of metres and can therefore elucidate biodiversityâgeodiversity relationships across scales. Evidence
We show how one important geodiversity variable, elevation, relates to alpha, beta and gamma taxonomic diversity of trees across spatial scales. We use elevation from NASA\u27s Shuttle Radar Topography Mission (SRTM) and c. 16,000 Forest Inventory and Analysis plots to quantify spatial scaling relationships between biodiversity and geodiversity with generalized linear models (for alpha and gamma diversity) and beta regression (for beta diversity) across five spatial grains ranging from 5 to 100 km. We illustrate different relationships depending on the form of diversity; beta and gamma diversity show the strongest relationship with variation in elevation. Conclusion
With the onset of climate change, it is more important than ever to examine geodiversity for its potential to foster biodiversity. Widely available satellite remotely sensed geodiversity data offer an important and expanding suite of measurements for understanding and predicting changes in different forms of biodiversity across scales. Interdisciplinary research teams spanning biodiversity, geoscience and remote sensing are well poised to advance understanding of biodiversityâgeodiversity relationships across scales and guide the conservation of nature
Harnessing the NEON data revolution to advance open environmental science with a diverse and data-capable community
It is a critical time to reflect on the National Ecological Observatory Network (NEON) science to date as well as envision what research can be done right now with NEON (and other) data and what training is needed to enable a diverse user community. NEON became fully operational in May 2019 and has pivoted from planning and construction to operation and maintenance. In this overview, the history of and foundational thinking around NEON are discussed. A framework of open science is described with a discussion of how NEON can be situated as part of a larger data constellationâacross existing networks and different suites of ecological measurements and sensors. Next, a synthesis of early NEON science, based on \u3e100 existing publications, funded proposal efforts, and emergent science at the very first NEON Science Summit (hosted by Earth Lab at the University of Colorado Boulder in October 2019) is provided. Key questions that the ecology community will address with NEON data in the next 10 yr are outlined, from understanding drivers of biodiversity across spatial and temporal scales to defining complex feedback mechanisms in humanâenvironmental systems. Last, the essential elements needed to engage and support a diverse and inclusive NEON user community are highlighted: training resources and tools that are openly available, funding for broad community engagement initiatives, and a mechanism to share and advertise those opportunities. NEON users require both the skills to work with NEON data and the ecological or environmental science domain knowledge to understand and interpret them. This paper synthesizes early directions in the communityâs use of NEON data, and opportunities for the next 10 yr of NEON operations in emergent science themes, open science best practices, education and training, and community building
Standardized NEON organismal data for biodiversity research
Understanding patterns and drivers of species distribution and abundance, and thus biodiversity, is a core goal of ecology. Despite advances in recent decades, research into these patterns and processes is currently limited by a lack of standardized, high-quality, empirical data that span large spatial scales and long time periods. The NEON fills this gap by providing freely available observational data that are generated during robust and consistent organismal sampling of several sentinel taxonomic groups within 81 sites distributed across the United States and will be collected for at least 30âyears. The breadth and scope of these data provide a unique resource for advancing biodiversity research. To maximize the potential of this opportunity, however, it is critical that NEON data be maximally accessible and easily integrated into investigators\u27 workflows and analyses. To facilitate its use for biodiversity research and synthesis, we created a workflow to process and format NEON organismal data into the ecocomDP (ecological community data design pattern) format that were available through the ecocomDP R package; we then provided the standardized data as an R data package (neonDivData). We briefly summarize sampling designs and data wrangling decisions for the major taxonomic groups included in this effort. Our workflows are open-source so the biodiversity community may: add additional taxonomic groups; modify the workflow to produce datasets appropriate for their own analytical needs; and regularly update the data packages as more observations become available. Finally, we provide two simple examples of how the standardized data may be used for biodiversity research. By providing a standardized data package, we hope to enhance the utility of NEON organismal data in advancing biodiversity research and encourage the use of the harmonized ecocomDP data design pattern for community ecology data from other ecological observatory networks
The status and future of essential geodiversity variables
Rapid environmental change, natural resource overconsumption and increasing concerns about ecological sustainability have led to the development of 'Essential Variables' (EVs). EVs are harmonized data products to inform policy and to enable effective management of natural resources by monitoring global changes. Recent years have seen the instigation of new EVs beyond those established for climate, oceans and biodiversity (ECVs, EOVs and EBVs), including Essential Geodiversity Variables (EGVs). EGVs aim to consistently quantify and monitor heterogeneity of Earth-surface and subsurface abiotic features, including geology, geomorphology, hydrology and pedology. Here we assess the status and future development of EGVs to better incorporate geodiversity into policy and sustainable management of natural resources. Getting EGVs operational requires better consensus on defining geodiversity, investments into a governance structure and open platform for curating the development of EGVs, advances in harmonizing in situ measurements and linking heterogeneous databases, and development of open and accessible computational workflows for global digital mapping using machine-learning techniques. Cross-disciplinary collaboration and partnerships with governmental and private organizations are needed to ensure the successful development and uptake of EGVs across science and policy. This article is part of the Theo Murphy meeting issue 'Geodiversity for science and society'
Harnessing the NEON data revolution to advance open environmental science with a diverse and data-capable community
It is a critical time to reflect on the National Ecological Observatory Network (NEON) science to date as well as envision what research can be done right now with NEON (and other) data and what training is needed to enable a diverse user community. NEON became fully operational in May 2019 and has pivoted from planning and construction to operation and maintenance. In this overview, the history of and foundational thinking around NEON are discussed. A framework of open science is described with a discussion of how NEON can be situated as part of a larger data constellationâacross existing networks and different suites of ecological measurements and sensors. Next, a synthesis of early NEON science, based on >100 existing publications, funded proposal efforts, and emergent science at the very first NEON Science Summit (hosted by Earth Lab at the University of Colorado Boulder in October 2019) is provided. Key questions that the ecology community will address with NEON data in the next 10 yr are outlined, from understanding drivers of biodiversity across spatial and temporal scales to defining complex feedback mechanisms in humanâenvironmental systems. Last, the essential elements needed to engage and support a diverse and inclusive NEON user community are highlighted: training resources and tools that are openly available, funding for broad community engagement initiatives, and a mechanism to share and advertise those opportunities. NEON users require both the skills to work with NEON data and the ecological or environmental science domain knowledge to understand and interpret them. This paper synthesizes early directions in the communityâs use of NEON data, and opportunities for the next 10 yr of NEON operations in emergent science themes, open science best practices, education and training, and community building
- âŠ