262 research outputs found

    The Effect of Particulate Air Pollution on Emergency Admissions for Myocardial Infarction: A Multicity Case-Crossover Analysis

    Get PDF
    Recently, attention has focused on whether particulate air pollution is a specific trigger of myocardial infarction (MI). The results of several studies of single locations assessing the effects of ambient particular matter on the risk of MI have been disparate. We used a multicity case-crossover study to examine risk of emergency hospitalization associated with fine particulate matter (PM) with aerodynamic diameter < 10 μm (PM(10)) for > 300,000 MIs during 1985–1999 among elderly residents of 21 U.S. cities. We used time-stratified controls matched on day of the week or on temperature to detect possible residual confounding by weather. Overall, we found a 0.65% [95% confidence interval (CI), 0.3–1.0%] increased risk of hospitalization for MI per 10 μg/m(3) increase in ambient PM(10) concentration. Matching on apparent temperature yielded a 0.64% increase in risk (95% CI, 0.1–1.2%). We found that the effect size for PM(10) doubled for subjects with a previous admission for chronic obstructive pulmonary disease or a secondary diagnosis of pneumonia, although these differences did not achieve statistical significance. There was a weaker indication of a larger effect on males but no evidence of effect modification by age or the other diagnoses. We also found that the shape of the exposure–response relationship between MI hospitalizations and PM(10) is almost linear, but with a steeper slope at levels of PM(10) < 50 μg/m(3). We conclude that increased concentrations of ambient PM(10) are associated with increased risk of MI among the elderly

    Particulate Air Pollution, Progression, and Survival after Myocardial Infarction

    Get PDF
    OBJECTIVE: Several studies have examined the effect of particulate pollution (PM) on survival in general populations, but less is known about susceptible groups. Moreover, previous cohort studies have been cross-sectional and subject to confounding by uncontrolled differences between cities. DESIGN: We investigated whether PM was associated with progression of disease or reduced survival in a study of 196,000 persons from 21 U.S. cities discharged alive following an acute myocardial infarction (MI), using within-city between-year exposure to PM. We constructed city-specific cohorts of survivors of acute MI using Medicare data between 1985 and 1999, and defined three outcomes on follow-up: death, subsequent MI, and a first admission for congestive heart failure (CHF). Yearly averages of PM(10) (particulate matter with aerodynamic diameter < 10 μm) were merged to the individual annual follow-up in each city. We applied Cox’s proportional hazard regression model in each city, with adjustment for individual risk factors. In the second stage of the analysis, the city-specific results were combined using a meta-regression. RESULTS: We found significant associations with a hazard ratio for the sum of the distributed lags of 1.3 [95% confidence interval (CI), 1.2–1.5] for mortality, a hazard ratio of 1.4 (95% CI, 1.2–1.7) for a hospitalization for CHF, and a hazard ratio of 1.4 (95% CI, 1.1–1.8) for a new hospitalization for MI per 10 μg/m(3) PM(10). CONCLUSIONS: This is the first long-term study showing a significant association between particle exposure and adverse post-MI outcomes in persons who survived an MI

    Hierarchical Bivariate Time Series Models: A Combined Analysis of the Effects of Particulate Matter on Morbidity and Mortality

    Get PDF
    In this paper we develop a hierarchical bivariate time series model to characterize the relationship between particulate matter less than 10 microns in aerodynamic diameter (PM10) and both mortality and hospital admissions for cardiovascular diseases. The model is applied to time series data on mortality and morbidity for 10 metropolitan areas in the United States from 1986 to 1993. We postulate that these time series should be related through a shared relationship with PM10. At the first stage of the hierarchy, we fit two seemingly unrelated Poisson regression models to produce city-specific estimates of the log relative rates of mortality and morbidity associated with exposure to PM10 within each location. The sample covariance matrix of the estimated log relative rates is obtained using a novel generalized estimating equation approach that takes into account the correlation between the mortality and morbidity time series. At the second stage, we combine information across locations to estimate overall log relative rates of mortality and morbidity and variation of the rates across cities. Using the combined information across the 10 locations we find that a 10 mu g/m3 increase in average PM10 at the current day and previous day is associated with a 0:26% increase in mortality (95% posterior interval -0:37; 0:65), and a 0:71% increase in hospital admissions (95% posterior interval 0:35; 0:99). The log relative rates of mortality and morbidity have a similar degree of heterogeneity across cities: the posterior means of the between-city standard deviations of the mortality and morbidity air pollution effects are 0:42 (95% interval 0:05; 1:18), and 0:31 (95% interval 0:10; 0:89), respectively. The city-specific log relative rates of mortality and morbidity are estimated to have very low correlation, but the uncertainty in the correlation is very substantial (posterior mean = 0:20; 95% interval -0:89; 0:98). With the parameter estimates from the model, we can predict the hospitalization log relative rate for a new city for which hospitalization data are unavailable, using that city\u27s estimated mortality relative rate. We illustrate this prediction using New York as an example
    corecore