1,023 research outputs found

    Approximately bisectrix-orthogonality preserving mappings

    Full text link
    Regarding the geometry of a real normed space X{\mathcal X}, we mainly introduce a notion of approximate bisectrix-orthogonality on vectors x,y∈Xx, y \in {\mathcal X} as follows: {x\np{\varepsilon}}_W y \mbox{if and only if} \sqrt{2}\frac{1-\varepsilon}{1+\varepsilon}\|x\|\,\|y\|\leq \Big\|\,\|y\|x+\|x\|y\,\Big\|\leq\sqrt{2}\frac{1+\varepsilon}{1-\varepsilon}\|x\|\,\|y\|. We study class of linear mappings preserving the approximately bisectrix-orthogonality {\np{\varepsilon}}_W. In particular, we show that if T:X→YT: {\mathcal X}\to {\mathcal Y} is an approximate linear similarity, then {x\np{\delta}}_W y\Longrightarrow {Tx \np{\theta}}_W Ty \qquad (x, y\in {\mathcal X}) for any δ∈[0,1)\delta\in[0, 1) and certain θ≥0\theta\geq 0
    • …
    corecore