2 research outputs found
Energy storage in aluminum nanopowder in stress-strain state of crystal lattice
When transforming metals into nanodispersed state nanopowders acquire new properties, including the storage of energy by nonopowders. The increasing interest to aluminum powders and nanopowders is caused by their application as a high-energy additive in rocket fuels and pyrotechnic mixtures. Thus, the investigation of energy storage in Al nanopowder is of great importance. Besides, it is not easy to determine the amount of stored energy in Al nanopowder. The authors have used the aluminum nanopowder obtained by electrical explosion of aluminum wire in argon, using UDP-4D installation developed in Tomsk Polytechnic University. The main aim of the study is to asses experimentally the value of energy, stored in the form of stress-strain state of the crystal lattice of Al nanopowder and to compare the obtained value to a general value of stored energy. The methods used in the study are the X-Ray diffraction, differential thermal analysis. It was ascertained that the crystal lattice is in stressed state in air-passivated electroexplosive aluminum nanopowder. The modified Lorenz function was used as a profile function; crystalline microdistortions, calculated by the approximation technique, amount to 8,66 x 10[-4]. The value of energy, stored in the stress-strain state of the crystal lattice of electroexplosive aluminum nanopowder, is 0,385 J/g, while the value of stored energy, determined by means of differential thermal analysis, is 348 J/g. Thus, the most feasible mechanism of storing significant energy in aluminum nanopowder is the formation of more energy-saturated structures in solid (the formation of a double electric layer with pseudocapacity during passivation)
Energy storage in aluminum nanopowder in stress-strain state of crystal lattice
ΠΡΠΈ ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄Π΅ ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ² Π² Π½Π°Π½ΠΎΠ΄ΠΈΡΠΏΠ΅ΡΡΠ½ΠΎΠ΅ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ Π½Π°Π±Π»ΡΠ΄Π°Π΅ΡΡΡ ΠΏΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ Π½ΠΎΠ²ΡΡ
ΡΠ²ΠΎΠΉΡΡΠ² Π½Π°Π½ΠΎΠΏΠΎΡΠΎΡΠΊΠΎΠ², Π² ΡΠΎΠΌ ΡΠΈΡΠ»Π΅ Π·Π°ΠΏΠ°ΡΠ°Π½ΠΈΠ΅ Π½Π°Π½ΠΎΠΏΠΎΡΠΎΡΠΊΠ°ΠΌΠΈ ΡΠ½Π΅ΡΠ³ΠΈΠΈ. ΠΠΎΠ·ΡΠ°ΡΡΠ°ΡΡΠΈΠΉ ΠΈΠ½ΡΠ΅ΡΠ΅Ρ ΠΊ ΠΏΠΎΡΠΎΡΠΊΠ°ΠΌ ΠΈ Π½Π°Π½ΠΎΠΏΠΎΡΠΎΡΠΊΠ°ΠΌ Π°Π»ΡΠΌΠΈΠ½ΠΈΡ ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½ ΠΈΡ
ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ Π²ΡΡΠΎΠΊΠΎΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π΄ΠΎΠ±Π°Π²ΠΎΠΊ Π² ΡΠ°ΠΊΠ΅ΡΠ½ΡΠ΅ ΡΠΎΠΏΠ»ΠΈΠ²Π° ΠΈ ΠΏΠΈΡΠΎΡΠ΅Ρ
Π½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΌΠ΅ΡΠΈ. ΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²ΡΠ·Π°Π½Π° Ρ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΡΡΡΡ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΡ ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΠΎΠ² Π·Π°ΠΏΠ°ΡΠ°Π½ΠΈΡ ΡΠ½Π΅ΡΠ³ΠΈΠΈ Π½Π°Π½ΠΎΠΏΠΎΡΠΎΡΠΊΠΎΠΌ Π°Π»ΡΠΌΠΈΠ½ΠΈΡ. ΠΠΌΠ΅ΡΡΠ΅ Ρ ΡΠ΅ΠΌ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΏΡΠΎΠ±Π»Π΅ΠΌΠΎΠΉ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ Π·Π°ΠΏΠ°ΡΠ΅Π½Π½ΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ Π² Π½Π°Π½ΠΎΠΏΠΎΡΠΎΡΠΊΠ΅ Al. Π ΡΠ°Π±ΠΎΡΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈ ΠΏΠ°ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ ΠΌΠ°Π»ΡΠΌΠΈ Π΄ΠΎΠ±Π°Π²ΠΊΠ°ΠΌΠΈ Π²ΠΎΠ·Π΄ΡΡ
Π° Π½Π°Π½ΠΎΠΏΠΎΡΠΎΡΠΎΠΊ Π°Π»ΡΠΌΠΈΠ½ΠΈΡ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠΉ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π²Π·ΡΡΠ²Π° Π°Π»ΡΠΌΠΈΠ½ΠΈΠ΅Π²Ρ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² Π² ΡΡΠ΅Π΄Π΅ Π°ΡΠ³ΠΎΠ½Π° Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ Π£ΠΠ-4Π, ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΠΎΠΉ Π² Π’ΠΎΠΌΡΠΊΠΎΠΌ ΠΏΠΎΠ»ΠΈΡΠ΅Ρ
Π½ΠΈΡΠ΅ΡΠΊΠΎΠΌ ΡΠ½ΠΈΠ²Π΅ΡΡΠΈΡΠ΅ΡΠ΅. Π¦Π΅Π»Ρ ΡΠ°Π±ΠΎΡΡ: ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎ ΡΡΡΠ°Π½ΠΎΠ²ΠΈΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΡΠ½Π΅ΡΠ³ΠΈΠΈ, Π·Π°ΠΏΠ°ΡΠ°Π΅ΠΌΠΎΠΉ Π² ΡΠΎΡΠΌΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½Π½ΠΎ-Π΄Π΅ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΡΡΡΠΊΠΈ Π½Π°Π½ΠΎΠΏΠΎΡΠΎΡΠΊΠ° Π°Π»ΡΠΌΠΈΠ½ΠΈΡ ΠΈ ΡΡΠ°Π²Π½ΠΈΡΡ Ρ ΠΎΠ±ΡΠ΅ΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½ΠΎΠΉ Π·Π°ΠΏΠ°ΡΠ΅Π½Π½ΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ. ΠΠ΅ΡΠΎΠ΄Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ: Π΄ΠΈΡΡΠ°ΠΊΡΠΈΠΎΠ½Π½ΡΠ΅ ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΡΡΡΡΠΊΡΡΡΠ½ΡΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ, Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΠΉ ΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΈΠΉ Π°Π½Π°Π»ΠΈΠ·. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Π² ΠΏΠ°ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΌ Π²ΠΎΠ·Π΄ΡΡ
ΠΎΠΌ ΡΠ»Π΅ΠΊΡΡΠΎΠ²Π·ΡΡΠ²Π½ΠΎΠΌ Π½Π°Π½ΠΎΠΏΠΎΡΠΎΡΠΊΠ΅ Π°Π»ΡΠΌΠΈΠ½ΠΈΡ ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ΅ΡΡΡΠΊΠ° Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡ Π² Π½Π°ΠΏΡΡΠΆΠ΅Π½Π½ΠΎΠΌ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΈ. ΠΠΎΠ΄ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ ΠΠΎΡΠ΅Π½ΡΠ° Π±ΡΠ»Π° Π²ΡΠ±ΡΠ°Π½Π° Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ Π°ΠΏΠΏΡΠΎΠΊΡΠΈΠΌΠΈΡΡΡΡΠ΅ΠΉ, ΠΌΠΈΠΊΡΠΎΠΈΡΠΊΠ°ΠΆΠ΅Π½ΠΈΡ ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΡΠΎΠ², ΡΠ°ΡΡΡΠΈΡΠ°Π½Π½ΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π°ΠΏΠΏΡΠΎΠΊΡΠΈΠΌΠ°ΡΠΈΠΉ, ΡΠΎΡΡΠ°Π²Π»ΡΡΡ 8,66 Ρ
10[-4 ]. ΠΠ΅Π»ΠΈΡΠΈΠ½Π° ΡΠ½Π΅ΡΠ³ΠΈΠΈ, Π·Π°ΠΏΠ°ΡΠ°Π΅ΠΌΠΎΠΉ Π² Π½Π°ΠΏΡΡΠΆΠ΅Π½Π½ΠΎ-Π΄Π΅ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΌ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΈ ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΡΡΡΠΊΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠ²Π·ΡΡΠ²Π½ΠΎΠ³ΠΎ Π½Π°Π½ΠΎΠΏΠΎΡΠΎΡΠΊΠ° Π°Π»ΡΠΌΠΈΠ½ΠΈΡ, - 0,385 ΠΠΆ/Π³, Π² ΡΠΎ Π²ΡΠ΅ΠΌΡ ΠΊΠ°ΠΊ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½Π°Ρ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° Π·Π°ΠΏΠ°ΡΠ΅Π½Π½Π°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ 348 ΠΠΆ/Π³. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π²Π΅ΡΠΎΡΡΠ½ΡΠΌ ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΠΎΠΌ Π·Π°ΠΏΠ°ΡΠ°Π½ΠΈΡ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ Π½Π°Π½ΠΎΠΏΠΎΡΠΎΡΠΊΠΎΠΌ Π°Π»ΡΠΌΠΈΠ½ΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π±ΠΎΠ»Π΅Π΅ ΡΠ½Π΅ΡΠ³ΠΎΠ½Π°ΡΡΡΠ΅Π½Π½ΡΡ
ΡΡΡΡΠΊΡΡΡ Π² ΡΠ²Π΅ΡΠ΄ΠΎΠΌ ΡΠ΅Π»Π΅ (Π² ΡΠΎΠΌ ΡΠΈΡΠ»Π΅, Π·Π° ΡΡΡΡ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π½Π° ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ Π½Π°Π½ΠΎΠΏΠΎΡΠΎΡΠΊΠ° Π°Π»ΡΠΌΠΈΠ½ΠΈΡ ΠΏΡΠΈ ΠΏΠ°ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ»ΠΎΡ, ΠΎΠ±Π»Π°Π΄Π°ΡΡΠ΅Π³ΠΎ ΠΏΡΠ΅Π²Π΄ΠΎΠ΅ΠΌΠΊΠΎΡΡΡΡ).When transforming metals into nanodispersed state nanopowders acquire new properties, including the storage of energy by nonopowders. The increasing interest to aluminum powders and nanopowders is caused by their application as a high-energy additive in rocket fuels and pyrotechnic mixtures. Thus, the investigation of energy storage in Al nanopowder is of great importance. Besides, it is not easy to determine the amount of stored energy in Al nanopowder. The authors have used the aluminum nanopowder obtained by electrical explosion of aluminum wire in argon, using UDP-4D installation developed in Tomsk Polytechnic University. The main aim of the study is to asses experimentally the value of energy, stored in the form of stress-strain state of the crystal lattice of Al nanopowder and to compare the obtained value to a general value of stored energy. The methods used in the study are the X-Ray diffraction, differential thermal analysis. It was ascertained that the crystal lattice is in stressed state in air-passivated electroexplosive aluminum nanopowder. The modified Lorenz function was used as a profile function; crystalline microdistortions, calculated by the approximation technique, amount to 8,66 x 10[-4]. The value of energy, stored in the stress-strain state of the crystal lattice of electroexplosive aluminum nanopowder, is 0,385 J/g, while the value of stored energy, determined by means of differential thermal analysis, is 348 J/g. Thus, the most feasible mechanism of storing significant energy in aluminum nanopowder is the formation of more energy-saturated structures in solid (the formation of a double electric layer with pseudocapacity during passivation)