3 research outputs found

    Sulfidogenesis in hypersaline chloride-sulfate lakes of Kulunda Steppe (Altai, Russia)

    No full text
    The activity and culturable diversity of sulfidogens were investigated in anoxic sediments of four hypersaline lakes with pH 7.6-8.2 in the Kulunda Steppe (Altai, Russia). Sulfate reduction rates were low, varying from 0.1 to 6.0 nmol HS−/(cm3 h) with a maximum in the top 10 cm layer. Potential sulfidogenic rates with thiosulfate and sulfur as the e-acceptors were higher than with sulfate and were stimulated by formate, lactate, and acetate. Sulfidogenesis was optimal at salt concentrations below 2 M NaCl. Cultivation at 2 M NaCl resulted in the isolation of several strains of moderately halophilic SRB, but no growth of SRB was observed at 4 M NaCl. At lithotrophic conditions (i.e., with formate or H2 as e-donors), several closely related alkalitolerant strains belonging to the genus Desulfonatronovibrio were isolated. Enrichments at heterotrophic conditions with lactate, propionate, acetate, or butyrate using sulfate or thiosulfate as e-acceptors yielded isolates related to Desulfosalsimonas propionicica, Desulfohalobium utahense, and Desulfocella halophila. Sulfur-reducing enrichments at 2 M NaCl with ethanol produced a member of the genus Halanaerobium, while enrichments at 4 M NaCl with acetate were dominated by archaea, demonstrating for the first time such type of catabolism in haloarchaea

    Bacterial diversity and activity along a salinity gradient in soda lakes of the Kulunda Steppe (Altai, Russia)

    No full text
    Here we describe the diversity and activity of sulfate reducing bacteria along a salinity gradient in four different soda lakes from the Kulunda Steppe (South East Siberia, Russia). For this purpose, a combination of culture-dependent and independent techniques was applied. The general bacterial and SRB diversity were analyzed by denaturing gradient gel electrophoresis (DGGE) targeting the 16S rDNA gene. DNA was used to detect the microbial populations that were present in the soda lake sediments, whereas ribosomal RNA was used as a template to obtain information on those that were active. Individual DGGE bands were sequenced and a phylogenetic analysis was performed. In addition, the overall activity of SRB was obtained by measuring the sulfate reduction rates (SRR) and their abundance was estimated by serial dilution. Our results showed the presence of minor, but highly active microbial populations, mostly represented by members of the Proteobacteria. Remarkably high SRR were measured at hypersaline conditions (200 g L-1). A relatively high viable count indicated that sulfate reducing bacteria could be highly active in hypersaline soda lakes. Furthermore, the increase of sodium carbonate/bicarbonate seemed to affect the composition of the microbial community in soda lakes, but not the rate of sulfate reduction.BiotechnologyApplied Science
    corecore