14,566 research outputs found

    Photoproduction of Pentaquark Θ+\Theta^+ and Chiral Symmetry Restoration in Hot and Dense Medium

    Full text link
    The photoproduction rate of pentaquark Θ+\Theta^+ is calculated in a hot and dense medium. At high temperature and density, due to the restoration of chiral symmetry, photoproduction energy threshold is increased. Above the thresold the production cross section is strongly enhanced.Comment: 5 pages, 3 figure

    Adversarial Convolutional Networks with Weak Domain-Transfer for Multi-sequence Cardiac MR Images Segmentation

    Get PDF
    Analysis and modeling of the ventricles and myocardium are important in the diagnostic and treatment of heart diseases. Manual delineation of those tissues in cardiac MR (CMR) scans is laborious and time-consuming. The ambiguity of the boundaries makes the segmentation task rather challenging. Furthermore, the annotations on some modalities such as Late Gadolinium Enhancement (LGE) MRI, are often not available. We propose an end-to-end segmentation framework based on convolutional neural network (CNN) and adversarial learning. A dilated residual U-shape network is used as a segmentor to generate the prediction mask; meanwhile, a CNN is utilized as a discriminator model to judge the segmentation quality. To leverage the available annotations across modalities per patient, a new loss function named weak domain-transfer loss is introduced to the pipeline. The proposed model is evaluated on the public dataset released by the challenge organizer in MICCAI 2019, which consists of 45 sets of multi-sequence CMR images. We demonstrate that the proposed adversarial pipeline outperforms baseline deep-learning methods.Comment: 9 pages, 4 figures, conferenc

    Large-Alphabet Encoding Schemes for Floodlight Quantum Key Distribution

    Get PDF
    Floodlight quantum key distribution (FL-QKD) uses binary phase-shift keying (BPSK) of multiple optical modes to achieve Gbps secret-key rates (SKRs) at metropolitan-area distances. We show that FL-QKD's SKR can be doubled by using 32-ary PSK.Comment: 2 pages, 2 figure

    Entanglement-Enhanced Lidars for Simultaneous Range and Velocity Measurements

    Full text link
    Lidar is a well known optical technology for measuring a target's range and radial velocity. We describe two lidar systems that use entanglement between transmitted signals and retained idlers to obtain significant quantum enhancements in simultaneous measurement of these parameters. The first entanglement-enhanced lidar circumvents the Arthurs-Kelly uncertainty relation for simultaneous measurement of range and radial velocity from detection of a single photon returned from the target. This performance presumes there is no extraneous (background) light, but is robust to the roundtrip loss incurred by the signal photons. The second entanglement-enhanced lidar---which requires a lossless, noiseless environment---realizes Heisenberg-limited accuracies for both its range and radial-velocity measurements, i.e., their root-mean-square estimation errors are both proportional to 1/M1/M when MM signal photons are transmitted. These two lidars derive their entanglement-based enhancements from use of a unitary transformation that takes a signal-idler photon pair with frequencies ωS\omega_S and ωI\omega_I and converts it to a signal-idler photon pair whose frequencies are (ωS+ωI)/2(\omega_S + \omega_I)/2 and ωS−ωI\omega_S-\omega_I. Insight into how this transformation provides its benefits is provided through an analogy to superdense coding.Comment: 7 pages, 3 figure

    Distributed Quantum Sensing Using Continuous-Variable Multipartite Entanglement

    Full text link
    Distributed quantum sensing uses quantum correlations between multiple sensors to enhance the measurement of unknown parameters beyond the limits of unentangled systems. We describe a sensing scheme that uses continuous-variable multipartite entanglement to enhance distributed sensing of field-quadrature displacement. By dividing a squeezed-vacuum state between multiple homodyne-sensor nodes using a lossless beam-splitter array, we obtain a root-mean-square (rms) estimation error that scales inversely with the number of nodes (Heisenberg scaling), whereas the rms error of a distributed sensor that does not exploit entanglement is inversely proportional to the square root of number of nodes (standard quantum limit scaling). Our sensor's scaling advantage is destroyed by loss, but it nevertheless retains an rms-error advantage in settings in which there is moderate loss. Our distributed sensing scheme can be used to calibrate continuous-variable quantum key distribution networks, to perform multiple-sensor cold-atom temperature measurements, and to do distributed interferometric phase sensing.Comment: 7 pages, 3 figure

    Resource theory of non-Gaussian operations

    Get PDF
    Non-Gaussian states and operations are crucial for various continuous-variable quantum information processing tasks. To quantitatively understand non-Gaussianity beyond states, we establish a resource theory for non-Gaussian operations. In our framework, we consider Gaussian operations as free operations, and non-Gaussian operations as resources. We define entanglement-assisted non-Gaussianity generating power and show that it is a monotone that is non-increasing under the set of free super-operations, i.e., concatenation and tensoring with Gaussian channels. For conditional unitary maps, this monotone can be analytically calculated. As examples, we show that the non-Gaussianity of ideal photon-number subtraction and photon-number addition equal the non-Gaussianity of the single-photon Fock state. Based on our non-Gaussianity monotone, we divide non-Gaussian operations into two classes: (1) the finite non-Gaussianity class, e.g., photon-number subtraction, photon-number addition and all Gaussian-dilatable non-Gaussian channels; and (2) the diverging non-Gaussianity class, e.g., the binary phase-shift channel and the Kerr nonlinearity. This classification also implies that not all non-Gaussian channels are exactly Gaussian-dilatable. Our resource theory enables a quantitative characterization and a first classification of non-Gaussian operations, paving the way towards the full understanding of non-Gaussianity.Comment: 15 pages, 4 figure

    Voice Service Support in Mobile Ad Hoc Networks

    Full text link
    Mobile ad hoc networks are expected to support voice traffic. The requirement for small delay and jitter of voice traffic poses a significant challenge for medium access control (MAC) in such networks. User mobility makes it more complex due to the associated dynamic path attenuation. In this paper, a MAC scheme for mobile ad hoc networks supporting voice traffic is proposed. With the aid of a low-power probe prior to DATA transmissions, resource reservation is achieved in a distributed manner, thus leading to small delay and jitter. The proposed scheme can automatically adapt to dynamic path attenuation in a mobile environment. Simulation results demonstrate the effectiveness of the proposed scheme.Comment: To appear in the Proceedings of the IEEE Global Communications Conference (GLOBECOM), Washington, DC, November 26 - 30, 200

    Low-momentum Pion Enhancement Induced by Chiral Symmetry Restoration

    Full text link
    The thermal and nonthermal pion production by sigma decay and its relation with chiral symmetry restoration in a hot and dense matter are investigated. The nonthermal decay into pions of sigma mesons which are popularly produced in chiral symmetric phase leads to a low-momentum pion enhancement as a possible signature of chiral phase transition at finite temperature and density.Comment: 3 pages, 2 figure
    • …
    corecore