115 research outputs found
The prognostic significance of different proportion of signet-ring cells of colorectal carcinoma
While the prognosis of patients with partial SRCC (PSRCC) has been rarely reported, colorectal signet-ring cell carcinoma (SRCC) has been associated with poor prognosis. The aim of this study was to analyze the prognosis of patients with different SRCC composition and establish a prediction model. A total of 91 patients with SRC component were included in the study. These patients were divided into two groups: SRCC group (SRC composition > 50%; n=41) and partial SRCC (PSRCC) group (SRC composition ≤ 50%; n=50). COX regression model was used to identify independent prognostic factors for overall survival (OS). A predictive nomogram was established and compared with the 7th AJCC staging system. After a median follow-up of 16 months, no significant difference in OS was observed in either group. Preoperative carcinoembryonic antigen (CEA) level, pN stage, M stage, preoperative ileus, and adjuvant chemotherapy were independent prognostic risk factors for OS (p<0.05). A nomogram for predicting the overall survival of colorectal SRCC was established with a C-index of 0.800, and it showed better performance than that of the 7th AJCC staging system (p<0.001). In summary, the ratio of SRC component was not an independent prognostic factor of the OS. Those patients with less than 50% of SRC component should be given the same clinical attention. A predictive nomogram for survival based on five independent prognostic factors was developed and showed better performance than the 7th AJCC staging system. This resulted to be helpful for individualized prognosis prediction and risk assessment
Antisense-mediated exon skipping: a therapeutic strategy for titin-based dilated cardiomyopathy
Frameshift mutations in the TTN gene encoding titin are a major cause for inherited forms of dilated cardiomyopathy (DCM), a heart disease characterized by ventricular dilatation, systolic dysfunction, and progressive heart failure. To date, there are no specific treatment options for DCM patients but heart transplantation. Here, we show the beneficial potential of reframing titin transcripts by antisense oligonucleotide (AON)-mediated exon skipping in human and murine models of DCM carrying a previously identified autosomal-dominant frameshift mutation in titin exon 326. Correction of TTN reading frame in patient-specific cardiomyocytes derived from induced pluripotent stem cells rescued defective myofibril assembly and stability and normalized the sarcomeric protein expression. AON treatment in Ttn knock-in mice improved sarcomere formation and contractile performance in homozygous embryos and prevented the development of the DCM phenotype in heterozygous animals. These results demonstrate that disruption of the titin reading frame due to a truncating DCM mutation canbe restored by exon skipping in both patient cardiomyocytes invitro and mouse heart invivo, indicating RNA-based strategies as a potential treatment option for DCM
A real-world study of anlotinib as third-line or above therapy in patients with her-2 negative metastatic breast cancer
BackgroundAntiangiogenic agents provides an optional treatment strategy for patients with metastatic breast cancer. The present study was conducted to evaluate the efficacy and safety of anlotinib as third-line or above therapy for patients with HER-2 negative metastatic breast cancer.MethodsPatients with HER-2 negative metastatic breast cancer who have failed from prior therapy and treated with anlotinib monotherapy or combined with chemotherapy or immunotherapy from June 2018 to December 2020 were retrospectively analyzed based on real-world clinical practice. The primary end point was progression free survival (PFS). Secondary end points included objective response rate (ORR), disease control rate (DCR), overall survival (OS) and safety.Results47 patients with HER-2 negative metastatic breast cancer received anlotinib monotherapy or combination therapy as third-line or above therapy. In the general population, 10 patients achieved PR, 25 patients had SD and 12 patients had PD. The overall ORR and DCR were 21.3% and 74.5%, respectively. Subgroup analysis suggested that there were no statistically significant differences in ORR and DCR with respect to HR status (positive vs. negative), treatment programs (monotherapy vs. combination) and treatment type in combination group (chemotherapy vs. immunotherapy). The patients who did not received previously anti-angiogenesis therapy had superior DCR (84.8% vs. 50.0%, P=0.012). Median PFS and OS were 5.0 months (95% CI=4.3-5.7) and 21.0 (95% CI=14.9-27.1) months, respectively. The PFS (6.5m vs. 3.5m, P=0.042)and OS (28.2m vs. 12.6m, P=0.040) were better in HR positive patients than HR negative patients. And simultaneously, patients who received anlotinib combination therapy obtained better PFS (5.5m vs. 3.0m, P=0.045). The incidence of Grade 3-4 adverse events(AEs) was 31.9%.ConclusionsAnlotinib monotherapy or combination therapy provide a viable third-line or above therapeutic strategy in patients with HER-2 negative metastatic breast cancer, a median PFS of 5.0 months was obtained with well tolerated toxicity
Recommended from our members
Functional Screening of Candidate Causal Genes for Insulin Resistance in Human Preadipocytes and Adipocytes.
Rationale: Genome-wide association studies have identified genetic loci associated with insulin resistance (IR) but pinpointing the causal genes of a risk locus has been challenging. Objective: To identify candidate causal genes for IR, we screened regional and biologically plausible genes (16 in total) near the top 10 IR-loci in risk-relevant cell types, namely preadipocytes and adipocytes. Methods and Results: We generated 16 human Simpson-Golabi-Behmel syndrome preadipocyte knockout lines each with a single IR-gene knocked out by lentivirus-mediated CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 system. We evaluated each gene knockout by screening IR-relevant phenotypes in the 3 insulin-sensitizing mechanisms, including adipogenesis, lipid metabolism, and insulin signaling. We performed genetic analyses using data on the genotype-tissue expression portal expression quantitative trait loci database and accelerating medicines partnership type 2 diabetes mellitus Knowledge Portal to evaluate whether candidate genes prioritized by our in vitro studies were expression quantitative trait loci genes in human subcutaneous adipose tissue, and whether expression of these genes is associated with risk of IR, type 2 diabetes mellitus, and cardiovascular diseases. We further validated the functions of 3 new adipose IR genes by overexpression-based phenotypic rescue in the Simpson-Golabi-Behmel syndrome preadipocyte knockout lines. Twelve genes, PPARG, IRS-1, FST, PEPD, PDGFC, MAP3K1, GRB14, ARL15, ANKRD55, RSPO3, COBLL1, and LYPLAL1, showed diverse phenotypes in the 3 insulin-sensitizing mechanisms, and the first 7 of these genes could affect all the 3 mechanisms. Five out of 6 expression quantitative trait loci genes are among the top candidate causal genes and the abnormal expression levels of these genes (IRS-1, GRB14, FST, PEPD, and PDGFC) in human subcutaneous adipose tissue could be associated with increased risk of IR, type 2 diabetes mellitus, and cardiovascular disease. Phenotypic rescue by overexpression of the candidate causal genes (FST, PEPD, and PDGFC) in the Simpson-Golabi-Behmel syndrome preadipocyte knockout lines confirmed their function in adipose IR. Conclusions: Twelve genes showed diverse phenotypes indicating differential roles in insulin sensitization, suggesting mechanisms bridging the association of their genomic loci with IR. We prioritized PPARG, IRS-1, GRB14, MAP3K1, FST, PEPD, and PDGFC as top candidate genes. Our work points to novel roles for FST, PEPD, and PDGFC in adipose tissue, with consequences for cardiometabolic diseases
Early Non-Response as a Predictor of Later Non-Response to Antipsychotics in Schizophrenia: A Randomized Trial
BACKGROUND: It remains a challenge to predict the long-term response to antipsychotics in patients with schizophrenia who do not respond at an early stage. This study aimed to investigate the optimal predictive cut-off value for early non-response that would better predict later non-response to antipsychotics in patients with schizophrenia.
METHODS: This multicenter, 8-week, open-label, randomized trial was conducted at 19 psychiatric centers throughout China. All enrolled participants were assigned to olanzapine, risperidone, amisulpride, or aripiprazole monotherapy for 8 weeks. The positive and negative syndrome scale (PANSS) was evaluated at baseline, week 2, week 4, and week 8. The main outcome was the prediction of nonresponse. Nonresponse is defined as a \u3c 20% reduction in the total scores of PANSS from baseline to endpoint. Severity ratings of mild, moderate, and severe illness corresponded to baseline PANSS total scores of 58, 75, and 95, respectively.
RESULTS: At week 2, a reduction of \u3c 5% in the PANSS total score showed the highest total accuracy in the severe and mild schizophrenia patients (total accuracy, 75.0% and 80.8%, respectively), and patients who were treated with the risperidone and amisulpride groups (total accuracy, 82.4%, and 78.2%, respectively). A 10% decrease exhibited the best overall accuracy in the moderate schizophrenia patients (total accuracy, 84.0%), olanzapine (total accuracy, 79.2%), and aripiprazole group (total accuracy, 77.4%). At week 4, the best predictive cut-off value was \u3c 20%, regardless of the antipsychotic or severity of illness (total accuracy ranging from 89.8 to 92.1%).
CONCLUSIONS: Symptom reduction at week 2 has acceptable discrimination in predicting later non-response to antipsychotics in schizophrenia, and a more accurate predictive cut-off value should be determined according to the medication regimen and baseline illness severity. The response to treatment during the next 2 weeks after week 2 could be further assessed to determine whether there is a need to change antipsychotic medication during the first four weeks.
TRIAL REGISTRATION: This study was registered on Clinicaltrials.gov (NCT03451734)
Positive effects of parent–child group emotional regulation and resilience training on nonsuicidal self-injury behavior in adolescents: a quasi-experimental study
BackgroundNonsuicidal self-injury (NSSI) among adolescents is a growing global concern. However, effective interventions for treating NSSI are limited.MethodA 36-week quasi-experimental study design of parent–child group resilience training (intervention group) for adolescents aged 12–17 years was used and compared with treatment-as-usual (control group). The primary endpoint was the frequency of NSSI assessed with the Ottawa Self-Injury Inventory (OSI), and the secondary endpoints were the levels of depression, hope, resilience, and family adaptability and cohesion as assessed by the 24-item Hamilton depression rating scale (HAMD-24), Herth Hope Scale (HHS), Connor-Davidson Resilience Scale (CD-RISC), and Family Adaptability and Cohesion Evaluation Scale, second edition (FACES-II-CV), respectively.ResultA total of 118 participants completed the trial. Both groups showed a significant reduction in NSSI frequency after 12, 24, and 36 weeks of intervention (p< 0.05), although the intervention group did not differ significantly from the control group. After 12, 24, and 36 weeks of intervention, the CD-RISC, HHS, HAMD-24, and FACES-II-CV scores in the intervention and control groups improved over baseline (p< 0.05). Furthermore, the intervention group had higher scores on the CD-RISC, HHS, and FACES-II-CV and lower scores on the HAMD-24 than the control group after 12, 24, and 36 weeks of intervention (p  < 0.05).ConclusionParent–child group emotional regulation and resilience training showed promise as treatment options for NSSI among adolescents, leading to increased hope, resilience, and improved family dynamics among NSSI teens. Moreover, NSSI frequency significantly decreased in the intervention group compared to baseline
RSPO3 impacts body fat distribution and regulates adipose cell biology in vitro
Fat distribution is an independent cardiometabolic risk factor. However, its molecular and cellular underpinnings remain obscure. Here we demonstrate that two independent GWAS signals at RSPO3, which are associated with increased body mass index-adjusted waist-to-hip ratio, act to specifically increase RSPO3 expression in subcutaneous adipocytes. These variants are also associated with reduced lower-body fat, enlarged gluteal adipocytes and insulin resistance. Based on human cellular studies RSPO3 may limit gluteofemoral adipose tissue (AT) expansion by suppressing adipogenesis and increasing gluteal adipocyte susceptibility to apoptosis. RSPO3 may also promote upper-body fat distribution by stimulating abdominal adipose progenitor (AP) proliferation. The distinct biological responses elicited by RSPO3 in abdominal versus gluteal APs in vitro are associated with differential changes in WNT signalling. Zebrafish carrying a nonsense rspo3 mutation display altered fat distribution. Our study identifies RSPO3 as an important determinant of peripheral AT storage capacity
Leukocytes carrying Clonal Hematopoiesis of Indeterminate Potential (CHIP) Mutations invade Human Atherosclerotic Plaques.
BACKGROUND: Leukocyte progenitors derived from clonal hematopoiesis of undetermined potential (CHIP) are associated with increased cardiovascular events. However, the prevalence and functional relevance of CHIP in coronary artery disease (CAD) are unclear, and cells affected by CHIP have not been detected in human atherosclerotic plaques. METHODS: CHIP mutations in blood and tissues were identified by targeted deep-DNA-sequencing (DNAseq: coverage >3,000) and whole-genome-sequencing (WGS: coverage >35). CHIP-mutated leukocytes were visualized in human atherosclerotic plaques by mutaFISH â„¢. Functional relevance of CHIP mutations was studied by RNAseq. RESULTS: DNAseq of whole blood from 540 deceased CAD patients of the Munich cardIovaScular StudIes biObaNk (MISSION) identified 253 (46.9%) CHIP mutation carriers (mean age 78.3 years). DNAseq on myocardium, atherosclerotic coronary and carotid arteries detected identical CHIP mutations in 18 out of 25 mutation carriers in tissue DNA. MutaFISH â„¢ visualized individual macrophages carrying DNMT3A CHIP mutations in human atherosclerotic plaques. Studying monocyte-derived macrophages from Stockholm-Tartu Atherosclerosis Reverse Networks Engineering Task (STARNET; n=941) by WGS revealed CHIP mutations in 14.2% (mean age 67.1 years). RNAseq of these macrophages revealed that expression patterns in CHIP mutation carriers differed substantially from those of non-carriers. Moreover, patterns were different depending on the underlying mutations, e.g. those carrying TET2 mutations predominantly displayed upregulated inflammatory signaling whereas ASXL1 mutations showed stronger effects on metabolic pathways. CONCLUSIONS: Deep-DNA-sequencing reveals a high prevalence of CHIP mutations in whole blood of CAD patients. CHIP-affected leukocytes invade plaques in human coronary arteries. RNAseq data obtained from macrophages of CHIP-affected patients suggest that pro-atherosclerotic signaling differs depending on the underlying mutations. Further studies are necessary to understand whether specific pathways affected by CHIP mutations may be targeted for personalized treatment
- …