30 research outputs found
Inheritance of self-And graft-incompatibility traits in an F 1 apricot progeny
Floral self-incompatibility affecting yearly yield in a weather-dependent manner and graft incompatibility affecting longevity of mature trees are two important traits for apricot production. However, genetic control of graft compatibility and relationship between these traits are unknown. Here, we analyzed its inheritance in an F 1 apricot progeny from a cross between self- and graft- incompatible and self- and graft-compatible cultivars. Hybrid individuals were genotyped for establishing self-incompatibility status and grafted on the plum rootstock ‘Marianna 2624’. Phenotyping of graft incompatibility was done at two time points, one month and one year after grafting. Anatomical (necrotic layer, bark and wood discontinuity for two consecutive years) and cytomorphological (cell proliferation, cell arrangement and cell shape one month after grafting) characteristics related to graft compatibility displayed continuous variation within the progeny, suggesting a polygenic inheritance. Using the Pearson correlation test, strong and significant correlations were detected between anatomical and cytomorphological traits that may reduce the number of characters for screening genotypes or progenies for graft compatibility in segregating crosses. Furthermore, no correlation existed between self- and graft incompatibility traits suggesting that they are independent inheritance traits. Hence, screening an extended hybrid population is required for pyramiding these traits in breeding programs
Inheritance and relationship of importat characteristics for determinarion of graft incompatibility
Publishe
A haplotype-resolved chromosome-scale genome for Quercus rubra L. provides insights into the genetics of adaptive traits for red oak species
Northern red oak (Quercus rubra L.) is an ecologically and economically important forest tree native to North America. We present a chromosome-scale genome of Q. rubra generated by the combination of PacBio sequences and chromatin conformation capture (Hi-C) scaffolding. This is the first reference genome from the red oak clade (section Lobatae). The Q. rubra assembly spans 739 Mb with 95.27% of the genome in 12 chromosomes and 33,333 protein-coding genes. Comparisons to the genomes of Quercus lobata and Quercus mongolica revealed high collinearity, with intrachromosomal structural variants present. Orthologous gene family analysis with other tree species revealed that gene families associated with defense response were expanding and contracting simultaneously across the Q. rubra genome. Quercus rubra had the most CC-NBS-LRR and TIR-NBS-LRR resistance genes out of the 9 species analyzed. Terpene synthase gene family comparisons further reveal tandem gene duplications in TPS-b subfamily, similar to Quercus robur. Phylogenetic analysis also identified 4 subfamilies of the IGT/LAZY gene family in Q. rubra important for plant structure. Single major QTL regions were identified for vegetative bud break and marcescence, which contain candidate genes for further research, including a putative ortholog of the circadian clock constituent cryptochrome (CRY2) and 8 tandemly duplicated genes for serine protease inhibitors, respectively. Genome–environment associations across natural populations identified candidate abiotic stress tolerance genes and predicted performance in a common garden. This high-quality red oak genome represents an essential resource to the oak genomic community, which will expedite comparative genomics and biological studies in Quercus species
Comprehensive phenotypic characterization and genetic distinction of distinct goosegrass (Eleusine indica L. Gaertn.) ecotypes
Goosegrass (Eleusine indica L. Gaertn.) is a troublesome weed in turfgrass systems throughout the world. The development of herbicide resistant ecotypes has occurred to multiple modes of action. Goosegrass is a prolific seed producer (~50,000 per plant), fast growing and diverse weed. Such growing attributes make it essential to have a better understanding of the genetic diversity of various ecotypes. The objectives of this study were to determine if morphologically distinct goosegrass ecotypes collected in Florida were phenotypically distinct and genetically different. Phenotypically, the goosegrass ecotypes can be classified as follows; dwarf, intermediate 1 (int_I), intermediate 2 (int_II) and wild. The dwarf had the least seedheads followed by the wild ecotype; 5 and 17 respectively, while int_I and int_II had highest number of seedheads; 22 and 34 respectively. The dwarf ecotype had lowest height of 6 cm and the wild ecotype had highest height of 36 cm. Dwarf and int_II ecotypes had shortest internode length of 0.2 cm and 1 cm, respectively, while the wild ecotype had longest internode length of 7 cm. The dwarf ecotype had lowest number of racemes per plant of 1, while the wild ecotype had highest number of racemes per plant of 7. Total biomass was lowest for the dwarf and int_II ecotype; 0.7 g and 1.5 g, respectively, and total biomass was highest for the wild ecotype at 5 g. Gene sequencing of two rice (Oryza) gene sequences (accession AP014964 (gene A) and AP014965 (gene B)) and subsequent phylogenetic analysis suggest the ecotypes are genetically different. Three single nucleotide polymorphisms (SNP) of interest were discovered indicating allelic differences between ecotypes
Inheritance of self- and graft-incompatibility traits in an F1 apricot progeny
Floral self-incompatibility affecting yearly yield in a weather-dependent manner and graft incompatibility affecting longevity of mature trees are two important traits for apricot production. However, genetic control of graft compatibility and relationship between these traits are unknown. Here, we analyzed its inheritance in an F1 apricot progeny from a cross between self- and graft- incompatible and self- and graft-compatible cultivars. Hybrid individuals were genotyped for establishing self-incompatibility status and grafted on the plum rootstock ‘Marianna 2624’. Phenotyping of graft incompatibility was done at two time points, one month and one year after grafting. Anatomical (necrotic layer, bark and wood discontinuity for two consecutive years) and cytomorphological (cell proliferation, cell arrangement and cell shape one month after grafting) characteristics related to graft compatibility displayed continuous variation within the progeny, suggesting a polygenic inheritance. Using the Pearson correlation test, strong and significant correlations were detected between anatomical and cytomorphological traits that may reduce the number of characters for screening genotypes or progenies for graft compatibility in segregating crosses. Furthermore, no correlation existed between self- and graft incompatibility traits suggesting that they are independent inheritance traits. Hence, screening an extended hybrid population is required for pyramiding these traits in breeding programs.Publishe
Construcción de un nuevo mapa genético de ligamiento en albaricoquero basado en SNPs
En este estudio se describe la creación del primer mapa de ligamiento genético en albaricoquero (Prunus armeniaca L.) mediante genotipado por secuenciacÃon (GBS) a partir de una población F1 de 138 individuos obtenidos del cruce intra-especÃfico de los cultivares de albaricoquero 'MoniquÃ' y 'Paviot' (MoxPa). Debido al contraste fenotÃpico de los parentales, este cruce segrega para varios caracteres agronómicos importantes como la autocompatibilidad floral, la tendencia a la compatibilidad del injerto y el color del fruto. Los resultados de genotipado en los parentales y en la descendencia proporcionaron un conjunto de 26.593 SNPs. Para los cálculos asociados a la construcción de los mapas genéticos se utilizó el programa JoinMap 4.1. Los mapas desarrollados incluyen ocho grupos de ligamientos y tienen una cobertura de 780.2 cM y 690.4 cM para ‘MoniquÃ’ y para ‘Paviot’, respectivamente. Los mapas obtenidos proporcionan un valioso conjunto de SNPs útiles para la identificación de QTLs (Quantitative Trait Loci) que podrán servir como herramienta en los programas de mejora de albaricoquero que actualmente se llevan a cabo.Publishe