2,499 research outputs found

    Apply current exponential de Finetti theorem to realistic quantum key distribution

    Full text link
    In the realistic quantum key distribution (QKD), Alice and Bob respectively get a quantum state from an unknown channel, whose dimension may be unknown. However, while discussing the security, sometime we need to know exact dimension, since current exponential de Finetti theorem, crucial to the information-theoretical security proof, is deeply related with the dimension and can only be applied to finite dimensional case. Here we address this problem in detail. We show that if POVM elements corresponding to Alice and Bob's measured results can be well described in a finite dimensional subspace with sufficiently small error, then dimensions of Alice and Bob's states can be almost regarded as finite. Since the security is well defined by the smooth entropy, which is continuous with the density matrix, the small error of state actually means small change of security. Then the security of unknown-dimensional system can be solved. Finally we prove that for heterodyne detection continuous variable QKD and differential phase shift QKD, the collective attack is optimal under the infinite key size case.Comment: 11 pages, 2 figures, detailed version, applications adde

    Fast Low-rank Representation based Spatial Pyramid Matching for Image Classification

    Full text link
    Spatial Pyramid Matching (SPM) and its variants have achieved a lot of success in image classification. The main difference among them is their encoding schemes. For example, ScSPM incorporates Sparse Code (SC) instead of Vector Quantization (VQ) into the framework of SPM. Although the methods achieve a higher recognition rate than the traditional SPM, they consume more time to encode the local descriptors extracted from the image. In this paper, we propose using Low Rank Representation (LRR) to encode the descriptors under the framework of SPM. Different from SC, LRR considers the group effect among data points instead of sparsity. Benefiting from this property, the proposed method (i.e., LrrSPM) can offer a better performance. To further improve the generalizability and robustness, we reformulate the rank-minimization problem as a truncated projection problem. Extensive experimental studies show that LrrSPM is more efficient than its counterparts (e.g., ScSPM) while achieving competitive recognition rates on nine image data sets.Comment: accepted into knowledge based systems, 201

    Security proof of differential phase shift quantum key distribution in the noiseless case

    Get PDF
    Differential phase shift quantum key distribution systems have a high potential for achieving high speed key generation. However, its unconditional security proof is still missing, even though it has been proposed for many years. Here, we prove its security against collective attacks with a weak coherent light source in the noiseless case (i.e. no bit error). The only assumptions are that quantum theory is correct, the devices are perfect and trusted and the key size is infinite. Our proof works on threshold detectors. We compute the lower bound of the secret key generation rate using the information-theoretical security proof method. Our final result shows that the lower bound of the secret key generation rate per pulse is linearly proportional to the channel transmission probability if Bob's detection counts obey the binomial distribution.Comment: Published version, 13 pages, 4 figures, minor changes, references added, acknowledgement adde

    Applicability of the Friedberg-Lee-Zhao method

    Full text link
    Friedberg, Lee and Zhao proposed a method for effectively evaluating the eigenenergies and eigen wavefunctions of quantum systems. In this work, we study several special cases to investigate applicability of the method. Concretely, we calculate the ground-state eigenenergy of the Hellmann potential as well as the Cornell potential, and also evaluate the energies of the systems where linear term is added to the Coulomb and harmonic oscillator potentials as a perturbation. The results obtained in this method have a surprising agreement with the traditional method or the numerical results. Since the results in this method have obvious analyticity compared to that in other methods, and because of the simplicity for calculations this method can be applied to solving the Schr\"{o}dinger equation and provides us better understanding of the physical essence of the concerned systems. But meanwhile applications of the FLZ method are restricted at present, especially for certain potential forms, but due to its obvious advantages, it should be further developed.Comment: 14 pages,no figure
    • …
    corecore