35,128 research outputs found
Global behavior of cosmological dynamics with interacting Veneziano ghost
In this paper, we shall study the dynamical behavior of the universe
accelerated by the so called Veneziano ghost dark energy component locally and
globally by using the linearization and nullcline method developed in this
paper. The energy density is generalized to be proportional to the Hawking
temperature defined on the trapping horizon instead of Hubble horizon of the
Friedmann-Robertson-Walker (FRW) universe. We also give a prediction of the
fate of the universe and present the bifurcation phenomenon of the dynamical
system of the universe. It seems that the universe could be dominated by dark
energy at present in some region of the parameter space.Comment: 8 pages, 7 figures, accepted for publication in JHE
Excitation of nonlinear ion acoustic waves in CH plasmas
Excitation of nonlinear ion acoustic wave (IAW) by an external electric field
is demonstrated by Vlasov simulation. The frequency calculated by the
dispersion relation with no damping is verified much closer to the resonance
frequency of the small-amplitude nonlinear IAW than that calculated by the
linear dispersion relation. When the wave number increases,
the linear Landau damping of the fast mode (its phase velocity is greater than
any ion's thermal velocity) increases obviously in the region of in which the fast mode is weakly damped mode. As a result, the deviation
between the frequency calculated by the linear dispersion relation and that by
the dispersion relation with no damping becomes larger with
increasing. When is not large, such as , the nonlinear IAW can be excited by the driver with the linear frequency
of the modes. However, when is large, such as
, the linear frequency can not be applied to exciting the
nonlinear IAW, while the frequency calculated by the dispersion relation with
no damping can be applied to exciting the nonlinear IAW.Comment: 10 pages, 9 figures, Accepted by POP, Publication in August 1
Generation of entangled photons by trapped ions in microcavities under a magnetic field gradient
We propose a potential scheme to generate entangled photons by manipulating
trapped ions embedded in two-mode microcavities, respectively, assisted by a
magnetic field gradient. By means of the spin-spin coupling due to the magnetic
field gradient and the Coulomb repulsion between the ions, we show how to
efficiently generate entangled photons by detecting the internal states of the
trapped ions. We emphasize that our scheme is advantageous to create complete
sets of entangled multi-photon states. The requirement and the experimental
feasibility of our proposal are discussed in detail.Comment: 2 Tables, 2 Figures, To appear in Phys. Rev.
Anti-Stokes scattering and Stokes scattering of stimulated Brillouin scattering cascade in high-intensity laser-plasmas interaction
The anti-Stokes scattering and Stokes scattering in stimulated Brillouin
scattering (SBS) cascade have been researched by the Vlasov-Maxwell simulation.
In the high-intensity laser-plasmas interaction, the stimulated anti-Stokes
Brillouin scattering (SABS) will occur after the second stage SBS rescattering.
The mechanism of SABS has been put forward to explain this phenomenon. And the
SABS will compete with the SBS rescattering to determine the total SBS
reflectivity. Thus, the SBS rescattering including the SABS is an important
saturation mechanism of SBS, and should be taken into account in the
high-intensity laser-plasmas interaction.Comment: 6 pages, 5 figure
Generation of N-qubit W state with rf-SQUID qubits by adiabatic passage
A simple scheme is presented to generate n-qubit W state with
rf-superconducting quantum interference devices (rf-SQUIDs) in cavity QED
through adiabatic passage. Because of the achievable strong coupling for
rf-SQUID qubits embedded in cavity QED, we can get the desired state with high
success probability. Furthermore, the scheme is insensitive to position
inaccuracy of the rf-SQUIDs. The numerical simulation shows that, by using
present experimental techniques, we can achieve our scheme with very high
success probability, and the fidelity could be eventually unity with the help
of dissipation.Comment: to appear in Phys. Rev.
Existence problem of proton semi-bubble structure in the state of Si
The fully self-consistent Hartree-Fock (HF) plus random phase approximation
(RPA) based on Skyrme-type interaction is used to study the existence problem
of proton semi-bubble structure in the state of Si. The
experimental excitation energy and the B(E2) strength of the state in
Si can be reproduced quite well. The tensor effect is also studied. It
is shown that the tensor interaction has a notable impact on the excitation
energy of the state and a small effect on the B(E2) value. Besides, its
effect on the density distributions in the ground and state of
Si is negligible. Our present results with T36 and T44 show that the
state of Si is mainly caused by proton transiton from orbit to orbit, and the existence of a proton
semi-bubble structure in this state is very unlikely.Comment: 6 pages, 3 figures, 3 table
- …