73 research outputs found
Algebraic approach to quantum field theory on non-globally-hyperbolic spacetimes
The mathematical formalism for linear quantum field theory on curved
spacetime depends in an essential way on the assumption of global
hyperbolicity. Physically, what lie at the foundation of any formalism for
quantization in curved spacetime are the canonical commutation relations,
imposed on the field operators evaluated at a global Cauchy surface. In the
algebraic formulation of linear quantum field theory, the canonical commutation
relations are restated in terms of a well-defined symplectic structure on the
space of smooth solutions, and the local field algebra is constructed as the
Weyl algebra associated to this symplectic vector space. When spacetime is not
globally hyperbolic, e.g. when it contains naked singularities or closed
timelike curves, a global Cauchy surface does not exist, and there is no
obvious way to formulate the canonical commutation relations, hence no obvious
way to construct the field algebra. In a paper submitted elsewhere, we report
on a generalization of the algebraic framework for quantum field theory to
arbitrary topological spaces which do not necessarily have a spacetime metric
defined on them at the outset. Taking this generalization as a starting point,
in this paper we give a prescription for constructing the field algebra of a
(massless or massive) Klein-Gordon field on an arbitrary background spacetime.
When spacetime is globally hyperbolic, the theory defined by our construction
coincides with the ordinary Klein-Gordon field theory on aComment: 21 pages, UCSBTH-92-4
The averaged null energy condition for general quantum field theories in two dimensions
It is shown that the averaged null energy condition is fulfilled for a dense,
translationally invariant set of vector states in any local quantum field
theory in two-dimensional Minkowski spacetime whenever the theory has a mass
gap and possesses an energy-momentum tensor. The latter is assumed to be a
Wightman field which is local relative to the observables, generates locally
the translations, is divergence-free, and energetically bounded. Thus the
averaged null energy condition can be deduced from completely generic, standard
assumptions for general quantum field theory in two-dimensional flat spacetime.Comment: LateX2e, 16 pages, 1 eps figur
Averaged Energy Conditions and Evaporating Black Holes
In this paper the averaged weak (AWEC) and averaged null (ANEC) energy
conditions, together with uncertainty principle-type restrictions on negative
energy (``quantum inequalities''), are examined in the context of evaporating
black hole backgrounds in both two and four dimensions. In particular,
integrals over only half-geodesics are studied. We determine the regions of the
spacetime in which the averaged energy conditions are violated. In all cases
where these conditions fail, there appear to be quantum inequalities which
bound the magnitude and extent of the negative energy, and hence the degree of
the violation. The possible relevance of these results for the validity of
singularity theorems in evaporating black hole spacetimes is discussed.Comment: Sections 2.1 and 2.2 have been revised and some erroneous statements
corrected. The main conclusions and the figures are unchanged. 27 pp, plain
Latex, 3 figures available upon reques
Quantum field theory and time machines
We analyze the "F-locality condition" (proposed by Kay to be a mathematical
implementation of a philosophical bias related to the equivalence principle, we
call it the "GH-equivalence principle"), which is often used to build a
generalization of quantum field theory to non-globally hyperbolic spacetimes.
In particular we argue that the theorem proved by Kay, Radzikowski, and Wald to
the effect that time machines with compactly generated Cauchy horizons are
incompatible with the F-locality condition actually does not support the
"chronology protection conjecture", but rather testifies that the F-locality
condition must be modified or abandoned. We also show that this condition
imposes a severe restriction on the geometry of the world (it is just this
restriction that comes into conflict with the existence of a time machine),
which does not follow from the above mentioned philosophical bias. So, one need
not sacrifice the GH-equivalence principle to "emend" the F-locality condition.
As an example we consider a particular modification, the "MF-locality
condition". The theory obtained by replacing the F-locality condition with the
MF-locality condition possesses a few attractive features. One of them is that
it is consistent with both locality and the existence of time machines.Comment: Revtex, 14 pages, 1 .ps figure. To appear in Phys. Rev. D More
detailed discussion is given on the MF-locality condition. Minor corrections
in terminolog
The averaged null energy condition and difference inequalities in quantum field theory
Recently, Larry Ford and Tom Roman have discovered that in a flat cylindrical
space, although the stress-energy tensor itself fails to satisfy the averaged
null energy condition (ANEC) along the (non-achronal) null geodesics, when the
``Casimir-vacuum" contribution is subtracted from the stress-energy the
resulting tensor does satisfy the ANEC inequality. Ford and Roman name this
class of constraints on the quantum stress-energy tensor ``difference
inequalities." Here I give a proof of the difference inequality for a minimally
coupled massless scalar field in an arbitrary two-dimensional spacetime, using
the same techniques as those we relied on to prove ANEC in an earlier paper
with Robert Wald. I begin with an overview of averaged energy conditions in
quantum field theory.Comment: 20 page
Restrictions on negative energy density in a curved spacetime
Recently a restriction ("quantum inequality-type relation") on the
(renormalized) energy density measured by a static observer in a "globally
static" (ultrastatic) spacetime has been formulated by Pfenning and Ford for
the minimally coupled scalar field, in the extension of quantum inequality-type
relation on flat spacetime of Ford and Roman. They found negative lower bounds
for the line integrals of energy density multiplied by a sampling (weighting)
function, and explicitly evaluate them for some specific spacetimes. In this
paper, we study the lower bound on spacetimes whose spacelike hypersurfaces are
compact and without boundary. In the short "sampling time" limit, the bound has
asymptotic expansion. Although the expansion can not be represented by locally
invariant quantities in general due to the nonlocal nature of the integral, we
explicitly evaluate the dominant terms in the limit in terms of the invariant
quantities. We also make an estimate for the bound in the long sampling time
limit.Comment: LaTex, 23 Page
Signaling, Entanglement, and Quantum Evolution Beyond Cauchy Horizons
Consider a bipartite entangled system half of which falls through the event
horizon of an evaporating black hole, while the other half remains coherently
accessible to experiments in the exterior region. Beyond complete evaporation,
the evolution of the quantum state past the Cauchy horizon cannot remain
unitary, raising the questions: How can this evolution be described as a
quantum map, and how is causality preserved? What are the possible effects of
such nonstandard quantum evolution maps on the behavior of the entangled
laboratory partner? More generally, the laws of quantum evolution under extreme
conditions in remote regions (not just in evaporating black-hole interiors, but
possibly near other naked singularities and regions of extreme spacetime
structure) remain untested by observation, and might conceivably be non-unitary
or even nonlinear, raising the same questions about the evolution of entangled
states. The answers to these questions are subtle, and are linked in unexpected
ways to the fundamental laws of quantum mechanics. We show that terrestrial
experiments can be designed to probe and constrain exactly how the laws of
quantum evolution might be altered, either by black-hole evaporation, or by
other extreme processes in remote regions possibly governed by unknown physics.Comment: Combined, revised, and expanded version of quant-ph/0312160 and
hep-th/0402060; 13 pages, RevTeX, 2 eps figure
From wormhole to time machine: Comments on Hawking's Chronology Protection Conjecture
The recent interest in ``time machines'' has been largely fueled by the
apparent ease with which such systems may be formed in general relativity,
given relatively benign initial conditions such as the existence of traversable
wormholes or of infinite cosmic strings. This rather disturbing state of
affairs has led Hawking to formulate his Chronology Protection Conjecture,
whereby the formation of ``time machines'' is forbidden. This paper will use
several simple examples to argue that the universe appears to exhibit a
``defense in depth'' strategy in this regard. For appropriate parameter regimes
Casimir effects, wormhole disruption effects, and gravitational back reaction
effects all contribute to the fight against time travel. Particular attention
is paid to the role of the quantum gravity cutoff. For the class of model
problems considered it is shown that the gravitational back reaction becomes
large before the Planck scale quantum gravity cutoff is reached, thus
supporting Hawking's conjecture.Comment: 43 pages,ReV_TeX,major revision
Gravitational vacuum polarization III: Energy conditions in the (1+1) Schwarzschild spacetime
Building on a pair of earlier papers, I investigate the various point-wise
and averaged energy conditions for the quantum stress-energy tensor
corresponding to a conformally-coupled massless scalar field in the in the
(1+1)-dimensional Schwarzschild spacetime. Because the stress-energy tensors
are analytically known, I can get exact results for the Hartle--Hawking,
Boulware, and Unruh vacua. This exactly solvable model serves as a useful
sanity check on my (3+1)-dimensional investigations wherein I had to resort to
a mixture of analytic approximations and numerical techniques. Key results in
(1+1) dimensions are: (1) NEC is satisfied outside the event horizon for the
Hartle--Hawking vacuum, and violated for the Boulware and Unruh vacua. (2) DEC
is violated everywhere in the spacetime (for any quantum state, not just the
standard vacuum states).Comment: 7 pages, ReV_Te
Stress-energy tensor in the Bel-Szekeres space-time
In a recent work an approximation procedure was introduced to calculate the
vacuum expectation value of the stress-energy tensor for a conformal massless
scalar field in the classical background determined by a particular colliding
plane wave space-time. This approximation procedure consists in appropriately
modifying the space-time geometry throughout the causal past of the collision
center. This modification in the geometry allows to simplify the boundary
conditions involved in the calculation of the Hadamard function for the quantum
state which represents the vacuum in the flat region before the arrival of the
waves. In the present work this approximation procedure is applied to the
non-singular Bel-Szekeres solution, which describes the head on collision of
two electromagnetic plane waves. It is shown that the stress-energy tensor is
unbounded as the killing-Cauchy horizon of the interaction is approached and
its behavior coincides with a previous calculation in another example of
non-singular colliding plane wave space-time.Comment: 17 pages, LaTex file, 2 PostScript figure
- …