137 research outputs found

    Solid waste mixtures combustion in a circulating fluidized Bed: emission properties of NOx, Dioxin, and Heavy Metals

    Get PDF
    To efficiently and environment friendly combust the domestic garbage, sludge, and swill waste fuels, five different fuels are prepared by mixing the waste fuels together with coal, and grass biomass at different mixing ratios, and finally those fuels were combusted in a circulating fluidized bed (CFB) reactor. The emission performances of NOx, dioxin, and heavy metal during the combustion tests are studied. The results showed that a stable furnace temperature can be reached at approximately 850 °C when combusting all studied mixed fuels, benefiting the thermal processes of sludge and domestic garbage and thus realizing the purpose of waste-to-fuel. In addition, the dioxin emissions are much lower than the emission standards, and NOx emissions could be reduced significantly by adjusting the ratio of waste fuels. However, the emissions of mercury, lead, and the combinations of chromium, tin, antimony, cupper and manganese components all exceeded the pollution control standard for hazardous wastes incineration, a further technology is required for heavy metal reductions to achieve the emission standards

    Cationic chitosan derivatives as potential antifungals: A review of structural optimization and applications

    Get PDF
    The increasing resistance of pathogen fungi poses a global public concern. There are several limitations in current antifungals, including few available fungicides, severe toxicity of some fungicides, and drug resistance. Therefore, there is an urgent need to develop new antifungals with novel targets. Chitosan has been recognized as a potential antifungal substance due to its good biocompatibility, biodegradability, non-toxicity, and availability in abundance, but its applications are hampered by the low charge density results in low solubility at physiological pH. It is believed that enhancing the positive charge density of chitosan may be the most effective approach to improve both its solubility and antifungal activity. Hence, this review mainly focuses on the structural optimization strategy of cationic chitosan and the potential antifungal applications. This review also assesses and comments on the challenges, shortcomings, and prospect of cationic chitosan derivatives as antifungal therapy

    Hypothesis test on a mixture forward-incubation-time epidemic model with application to COVID-19 outbreak

    Full text link
    The distribution of the incubation period of the novel coronavirus disease that emerged in 2019 (COVID-19) has crucial clinical implications for understanding this disease and devising effective disease-control measures. Qin et al. (2020) designed a cross-sectional and forward follow-up study to collect the duration times between a specific observation time and the onset of COVID-19 symptoms for a number of individuals. They further proposed a mixture forward-incubation-time epidemic model, which is a mixture of an incubation-period distribution and a forward time distribution, to model the collected duration times and to estimate the incubation-period distribution of COVID-19. In this paper, we provide sufficient conditions for the identifiability of the unknown parameters in the mixture forward-incubation-time epidemic model when the incubation period follows a two-parameter distribution. Under the same setup, we propose a likelihood ratio test (LRT) for testing the null hypothesis that the mixture forward-incubation-time epidemic model is a homogeneous exponential distribution. The testing problem is non-regular because a nuisance parameter is present only under the alternative. We establish the limiting distribution of the LRT and identify an explicit representation for it. The limiting distribution of the LRT under a sequence of local alternatives is also obtained. Our simulation results indicate that the LRT has desirable type I errors and powers, and we analyze a COVID-19 outbreak dataset from China to illustrate the usefulness of the LRT.Comment: 34 pages, 2 figures, 2 table

    TextFormer: A Query-based End-to-End Text Spotter with Mixed Supervision

    Full text link
    End-to-end text spotting is a vital computer vision task that aims to integrate scene text detection and recognition into a unified framework. Typical methods heavily rely on Region-of-Interest (RoI) operations to extract local features and complex post-processing steps to produce final predictions. To address these limitations, we propose TextFormer, a query-based end-to-end text spotter with Transformer architecture. Specifically, using query embedding per text instance, TextFormer builds upon an image encoder and a text decoder to learn a joint semantic understanding for multi-task modeling. It allows for mutual training and optimization of classification, segmentation, and recognition branches, resulting in deeper feature sharing without sacrificing flexibility or simplicity. Additionally, we design an Adaptive Global aGgregation (AGG) module to transfer global features into sequential features for reading arbitrarily-shaped texts, which overcomes the sub-optimization problem of RoI operations. Furthermore, potential corpus information is utilized from weak annotations to full labels through mixed supervision, further improving text detection and end-to-end text spotting results. Extensive experiments on various bilingual (i.e., English and Chinese) benchmarks demonstrate the superiority of our method. Especially on TDA-ReCTS dataset, TextFormer surpasses the state-of-the-art method in terms of 1-NED by 13.2%.Comment: MIR 2023, 15 page
    • …
    corecore