53 research outputs found
Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor
Peer reviewedPostprin
Neuropsychological assessment of visuo-perceptual processing in children with neurodevelopmental disorders
Rey 複雑図形検査(Rey-Osterrieth Complex Figure test)は視空間構成能力や視覚性記憶,実行機能などを評価する神経心理学的検査である。本研究では板書のノートテイクや漢字の書字などの学習場面でのつまずきがみられる3名の神経発達障害をともなう子どもを対象に Rey 複雑図形検査を実施し,視覚認知処理過程に関する検討をおこなった。3名はいずれもまとまりのある要素を細分化させた方略を用いて図形を描画しており,視覚構成能力に関する指標において著しい低値を認め,視知覚能力の発達の未成熟さが推測された。本検査は子どもの抱える学習上の問題の把握に有用であり,神経発達障害における視覚認知能力の発達的経過に関するさらなる検討が必要と考えられた。独立行政法人日本学術振興会 科研費(25870931
Indian Monsoonal Variations During the Past 80 Kyr Recorded in NGHP-02 Hole 19B, Western Bay of Bengal: Implications From Chemical and Mineral Properties
金沢大学理工研究域地球社会基盤学系Detailed reconstruction of Indian summer monsoons is necessary to better understand the late Quaternary climate history of the Bay of Bengal and Indian peninsula. We established a chronostratigraphy for a sediment core from Hole 19B in the western Bay of Bengal, extending to approximately 80 kyr BP and examined major and trace element compositions and clay mineral components of the sediments. Higher δ 18 O values, lower TiO 2 contents, and weaker weathering in the sediment source area during marine isotope stages (MIS) 2 and 4 compared to MIS 1, 3, and 5 are explained by increased Indian summer monsoonal precipitation and river discharge around the western Bay of Bengal. Clay mineral and chemical components indicate a felsic sediment source, suggesting the Precambrian gneissic complex of the eastern Indian peninsula as the dominant sediment source at this site since 80 kyr. Trace element ratios (Cr/Th, Th/Sc, Th/Co, La/Cr, and Eu/Eu*) indicate increased sediment contributions from mafic rocks during MIS 2 and 4. We interpret these results as reflecting the changing influences of the eastern and western branches of the Indian summer monsoon and a greater decrease in rainfall in the eastern and northeastern parts of the Indian peninsula than in the western part during MIS 2 and 4. © 2018. American Geophysical Union. All Rights Reserved
In-situ mechanical weakness of subducting sediments beneath a plate boundary décollement in the Nankai Trough
© 2018, The Author(s). The study investigates the in-situ strength of sediments across a plate boundary décollement using drilling parameters recorded when a 1180-m-deep borehole was established during International Ocean Discovery Program (IODP) Expedition 370, Temperature-Limit of the Deep Biosphere off Muroto (T-Limit). Information of the in-situ strength of the shallow portion in/around a plate boundary fault zone is critical for understanding the development of accretionary prisms and of the décollement itself. Studies using seismic reflection surveys and scientific ocean drillings have recently revealed the existence of high pore pressure zones around frontal accretionary prisms, which may reduce the effective strength of the sediments. A direct measurement of in-situ strength by experiments, however, has not been executed due to the difficulty in estimating in-situ stress conditions. In this study, we derived a depth profile for the in-situ strength of a frontal accretionary prism across a décollement from drilling parameters using the recently established equivalent strength (EST) method. At site C0023, the toe of the accretionary prism area off Cape Muroto, Japan, the EST gradually increases with depth but undergoes a sudden change at ~ 800 mbsf, corresponding to the top of the subducting sediment. At this depth, directly below the décollement zone, the EST decreases from ~ 10 to 2 MPa, with a change in the baseline. This mechanically weak zone in the subducting sediments extends over 250 m (~ 800–1050 mbsf), corresponding to the zone where the fluid influx was discovered, and high-fluid pressure was suggested by previous seismic imaging observations. Although the origin of the fluids or absolute values of the strength remain unclear, our investigations support previous studies suggesting that elevated pore pressure beneath the décollement weakens the subducting sediments. [Figure not available: see fulltext.]
Removing Gas from a Closed-End Small Hole by Irradiating Acoustic Waves with Two Frequencies
publishe
Removing Gas from a Closed-End Small Hole by Irradiating Acoustic Waves with Two Frequencies
Filling microstructures in the air with liquid or removing trapped gases from a surface in a liquid are required in processes such as cleaning, bonding, and painting. However, it is difficult to deform the gas–liquid interface to fill a small hole with liquid when surface tension has closed one end. Therefore, it is necessary to have an efficient method of removing gas from closed-end holes in liquids. Here, we demonstrate the gas-removing method using acoustic waves from small holes. We observed gas column oscillation by changing the hole size, wettability, and liquid surface tension to clarify the mechanism. First, we found that combining two different frequencies enabled complete gas removal in water within 2 s. From high-speed observation, about half of the removal was dominated by droplet or film formation caused by oscillating the gas column. The other half was dominated by approaching and coalescing the divided gas column. We conclude that the natural frequency of both the air column and the bubbles inside the tube are important
- …