263 research outputs found

    Multi-resolution Tensor Learning for Large-Scale Spatial Data

    Get PDF
    High-dimensional tensor models are notoriously computationally expensive to train. We present a meta-learning algorithm, MMT, that can significantly speed up the process for spatial tensor models. MMT leverages the property that spatial data can be viewed at multiple resolutions, which are related by coarsening and finegraining from one resolution to another. Using this property, MMT learns a tensor model by starting from a coarse resolution and iteratively increasing the model complexity. In order to not "over-train" on coarse resolution models, we investigate an information-theoretic fine-graining criterion to decide when to transition into higher-resolution models. We provide both theoretical and empirical evidence for the advantages of this approach. When applied to two real-world large-scale spatial datasets for basketball player and animal behavior modeling, our approach demonstrate 3 key benefits: 1) it efficiently captures higher-order interactions (i.e., tensor latent factors), 2) it is orders of magnitude faster than fixed resolution learning and scales to very fine-grained spatial resolutions, and 3) it reliably yields accurate and interpretable models

    Iterative Amortized Inference

    Get PDF
    Inference models are a key component in scaling variational inference to deep latent variable models, most notably as encoder networks in variational auto-encoders (VAEs). By replacing conventional optimization-based inference with a learned model, inference is amortized over data examples and therefore more computationally efficient. However, standard inference models are restricted to direct mappings from data to approximate posterior estimates. The failure of these models to reach fully optimized approximate posterior estimates results in an amortization gap. We aim toward closing this gap by proposing iterative inference models, which learn to perform inference optimization through repeatedly encoding gradients. Our approach generalizes standard inference models in VAEs and provides insight into several empirical findings, including top-down inference techniques. We demonstrate the inference optimization capabilities of iterative inference models and show that they outperform standard inference models on several benchmark data sets of images and text.Comment: International Conference on Machine Learning (ICML) 201

    Generating Long-term Trajectories Using Deep Hierarchical Networks

    Get PDF
    We study the problem of modeling spatiotemporal trajectories over long time horizons using expert demonstrations. For instance, in sports, agents often choose action sequences with long-term goals in mind, such as achieving a certain strategic position. Conventional policy learning approaches, such as those based on Markov decision processes, generally fail at learning cohesive long-term behavior in such high-dimensional state spaces, and are only effective when myopic modeling lead to the desired behavior. The key difficulty is that conventional approaches are "shallow" models that only learn a single state-action policy. We instead propose a hierarchical policy class that automatically reasons about both long-term and short-term goals, which we instantiate as a hierarchical neural network. We showcase our approach in a case study on learning to imitate demonstrated basketball trajectories, and show that it generates significantly more realistic trajectories compared to non-hierarchical baselines as judged by professional sports analysts.Comment: Published in NIPS 201

    Batch Policy Learning under Constraints

    Get PDF
    When learning policies for real-world domains, two important questions arise: (i) how to efficiently use pre-collected off-policy, non-optimal behavior data; and (ii) how to mediate among different competing objectives and constraints. We thus study the problem of batch policy learning under multiple constraints, and offer a systematic solution. We first propose a flexible meta-algorithm that admits any batch reinforcement learning and online learning procedure as subroutines. We then present a specific algorithmic instantiation and provide performance guarantees for the main objective and all constraints. To certify constraint satisfaction, we propose a new and simple method for off-policy policy evaluation (OPE) and derive PAC-style bounds. Our algorithm achieves strong empirical results in different domains, including in a challenging problem of simulated car driving subject to multiple constraints such as lane keeping and smooth driving. We also show experimentally that our OPE method outperforms other popular OPE techniques on a standalone basis, especially in a high-dimensional setting

    Hierarchical Exploration for Accelerating Contextual Bandits

    Get PDF
    Contextual bandit learning is an increasingly popular approach to optimizing recommender systems via user feedback, but can be slow to converge in practice due to the need for exploring a large feature space. In this paper, we propose a coarse-to-fine hierarchical approach for encoding prior knowledge that drastically reduces the amount of exploration required. Intuitively, user preferences can be reasonably embedded in a coarse low-dimensional feature space that can be explored efficiently, requiring exploration in the high-dimensional space only as necessary. We introduce a bandit algorithm that explores within this coarse-to-fine spectrum, and prove performance guarantees that depend on how well the coarse space captures the user's preferences. We demonstrate substantial improvement over conventional bandit algorithms through extensive simulation as well as a live user study in the setting of personalized news recommendation.Comment: Appears in Proceedings of the 29th International Conference on Machine Learning (ICML 2012

    A General Large Neighborhood Search Framework for Solving Integer Programs

    Get PDF
    This paper studies how to design abstractions of large-scale combinatorial optimization problems that can leverage existing state-of-the-art solvers in general purpose ways, and that are amenable to data-driven design. The goal is to arrive at new approaches that can reliably outperform existing solvers in wall-clock time. We focus on solving integer programs, and ground our approach in the large neighborhood search (LNS) paradigm, which iteratively chooses a subset of variables to optimize while leaving the remainder fixed. The appeal of LNS is that it can easily use any existing solver as a subroutine, and thus can inherit the benefits of carefully engineered heuristic approaches and their software implementations. We also show that one can learn a good neighborhood selector from training data. Through an extensive empirical validation, we demonstrate that our LNS framework can significantly outperform, in wall-clock time, compared to state-of-the-art commercial solvers such as Gurobi

    Learning recurrent representations for hierarchical behavior modeling

    Get PDF
    We propose a framework for detecting action patterns from motion sequences and modeling the sensory-motor relationship of animals, using a generative recurrent neural network. The network has a discriminative part (classifying actions) and a generative part (predicting motion), whose recurrent cells are laterally connected, allowing higher levels of the network to represent high level phenomena. We test our framework on two types of data, fruit fly behavior and online handwriting. Our results show that 1) taking advantage of unlabeled sequences, by predicting future motion, significantly improves action detection performance when training labels are scarce, 2) the network learns to represent high level phenomena such as writer identity and fly gender, without supervision, and 3) simulated motion trajectories, generated by treating motion prediction as input to the network, look realistic and may be used to qualitatively evaluate whether the model has learnt generative control rules
    • …
    corecore