315 research outputs found

    Restricted Minimum Error Entropy Criterion for Robust Classification

    Full text link
    The minimum error entropy (MEE) criterion has been verified as a powerful approach for non-Gaussian signal processing and robust machine learning. However, the implementation of MEE on robust classification is rather a vacancy in the literature. The original MEE only focuses on minimizing the Renyi's quadratic entropy of the error probability distribution function (PDF), which could cause failure in noisy classification tasks. To this end, we analyze the optimal error distribution in the presence of outliers for those classifiers with continuous errors, and introduce a simple codebook to restrict MEE so that it drives the error PDF towards the desired case. Half-quadratic based optimization and convergence analysis of the new learning criterion, called restricted MEE (RMEE), are provided. Experimental results with logistic regression and extreme learning machine are presented to verify the desirable robustness of RMEE

    Performance and requirements of GEO SAR systems in the presence of Radio Frequency Interferences

    Get PDF
    Geosynchronous Synthetic Aperture Radar (GEO SAR) is a possible next generation SAR system, which has the excellent performance of less than one-day revisit and hundreds of kilometres coverage. However, Radio Frequency Interference (RFI) is a serious problem, because the specified primary allocation frequencies are shared by the increasing number of microwave devices. More seriously, as the high orbit of GEO SAR makes the system have a very large imaging swath, the RFI signals all over the illuminated continent will interfere and deteriorate the GEO SAR signal. Aimed at the RFI impact in GEO SAR case, this paper focuses on the performance evaluation and the system design requirement of GEO SAR in the presence of RFI impact. Under the RFI impact, Signal-to-Interference-plus-Noise Ratio (SINR) and the required power are theoretically deduced both for the ground RFI and the bistatic scattering RFI cases. Based on the theoretical analysis, performance evaluations of the GEO SAR design examples in the presence of RFI are conducted. The results show that higher RFI intensity and lower working frequency will make the GEO SAR have a higher power requirement for compensating the RFI impact. Moreover, specular RFI bistatic scattering will give rise to the extremely serious impact on GEO SAR, which needs incredible power requirements for compensations. At last, real RFI signal behaviours and statistical analyses based on the SMOS satellite, Beidou-2 navigation satellite and Sentinel-1 A data have been given in the appendix

    The Effect of Race/Ethnicity on the Age of Colon Cancer Diagnosis

    Full text link
    ABSTRACT BACKGROUND: Colorectal cancer is the third most commonly diagnosed cancer in the United States. Notably, racial/ethnic disparities exist in both incidence and mortality. PURPOSE: The aim of this case study was to investigate the impact of race/ethnicity on age at diagnosis of colorectal cancer in a defined population in Suffolk County, NY. METHODS: Data were retrospectively collected on race/ethnicity, health insurance status, age at diagnosis, stage at diagnosis, gender, smoking status, alcohol intake, tumor location, and body mass index for colorectal cancer patients with medical records in the Stony Brook University Medical Center database (2005-2011). Population-based data on Hispanic and non-Hispanic Whites were obtained from the Surveillance, Epidemiology, and End Results registry of New York State for an overlapping time period. Permutation-based ANCOVA and logistic regression with stepwise variable selection were conducted to identify covariates and first-order interactions associated with younger age at diagnosis and cancer stage as a dependent categorical variable. RESULTS: Of 328 colorectal cancer patients, Hispanics were diagnosed at a median younger age of 57y vs. 67y than non-Hispanic Whites (FDR = 0.001). Twenty-six percent of Hispanics were diagnosed with colorectal cancer prior to the recommended age (50y) for colorectal cancer surveillance compared to 11% of non-Hispanic Whites (FDR =0.007). Analysis of New York State registry data corroborated our findings that Hispanic colorectal cancer patients were diagnosed at a median younger age than non-Hispanic Whites. Permutation-based ANCOVA identified race/ethnicity and health insurance as significantly associated with age of diagnosis (P=0.001). Logistic regression selected (younger) age at diagnosis as being significantly associated with stage IV disease. The limitations of the case study reside in the use of self-reporting of race and ethnicity and in the small sample sizes. CONCLUSIONS: Hispanics may be at higher risk for colorectal cancer (y) and younger age at diagnosis is associated with advanced disease

    MCNS: Mining Causal Natural Structures Inside Time Series via A Novel Internal Causality Scheme

    Full text link
    Causal inference permits us to discover covert relationships of various variables in time series. However, in most existing works, the variables mentioned above are the dimensions. The causality between dimensions could be cursory, which hinders the comprehension of the internal relationship and the benefit of the causal graph to the neural networks (NNs). In this paper, we find that causality exists not only outside but also inside the time series because it reflects a succession of events in the real world. It inspires us to seek the relationship between internal subsequences. However, the challenges are the hardship of discovering causality from subsequences and utilizing the causal natural structures to improve NNs. To address these challenges, we propose a novel framework called Mining Causal Natural Structure (MCNS), which is automatic and domain-agnostic and helps to find the causal natural structures inside time series via the internal causality scheme. We evaluate the MCNS framework and impregnation NN with MCNS on time series classification tasks. Experimental results illustrate that our impregnation, by refining attention, shape selection classification, and pruning datasets, drives NN, even the data itself preferable accuracy and interpretability. Besides, MCNS provides an in-depth, solid summary of the time series and datasets.Comment: 9 pages, 6 figure

    Sensing as a Service in 6G Perceptive Mobile Networks: Architecture, Advances, and the Road Ahead

    Full text link
    Sensing-as-a-service is anticipated to be the core feature of 6G perceptive mobile networks (PMN), where high-precision real-time sensing will become an inherent capability rather than being an auxiliary function as before. With the proliferation of wireless connected devices, resource allocation in terms of the users' specific quality-of-service (QoS) requirements plays a pivotal role to enhance the interference management ability and resource utilization efficiency. In this article, we comprehensively introduce the concept of sensing service in PMN, including the types of tasks, the distinctions/advantages compared to conventional networks, and the definitions of sensing QoS. Subsequently, we provide a unified RA framework in sensing-centric PMN and elaborate on the unique challenges. Furthermore, we present a typical case study named "communication-assisted sensing" and evaluate the performance trade-off between sensing and communication procedure. Finally, we shed light on several open problems and opportunities deserving further investigation in the future

    Partial Maximum Correntropy Regression for Robust Trajectory Decoding from Noisy Epidural Electrocorticographic Signals

    Full text link
    The Partial Least Square Regression (PLSR) exhibits admirable competence for predicting continuous variables from inter-correlated brain recordings in the brain-computer interface. However, PLSR is in essence formulated based on the least square criterion, thus, being non-robust with respect to noises. The aim of this study is to propose a new robust implementation for PLSR. To this end, the maximum correntropy criterion (MCC) is used to propose a new robust variant of PLSR, called as Partial Maximum Correntropy Regression (PMCR). The half-quadratic optimization is utilized to calculate the robust projectors for the dimensionality reduction, and the regression coefficients are optimized by a fixed-point approach. We evaluate the proposed PMCR with a synthetic example and the public Neurotycho electrocorticography (ECoG) datasets. The extensive experimental results demonstrate that, the proposed PMCR can achieve better prediction performance than the conventional PLSR and existing variants with three different performance indicators in high-dimensional and noisy regression tasks. PMCR can suppress the performance degradation caused by the adverse noise, ameliorating the decoding robustness of the brain-computer interface
    corecore