257 research outputs found

    Using the electromagnetic induction survey method to examine the depth to clay soil layer (Bt horizon) in playa wetlands

    Get PDF
    Purpose Sediment accumulation has been and continues to be a significant threat to the integrity of the playa wetland ecosystem. The purpose of this study was to determine the vertical depth to the clay soil layer (Bt horizon) and thus to calculate the thickness of sediments accumulated in playa wetlands. Materials and methods This study used the electromagnetic induction (EMI) survey method, specifically EM38-MK2 equipment, to measure the vertical depth to the clay soil layer at the publicly managed wetlands in the Rainwater Basin, Nebraska, USA. Results and discussion The results indicated that the depth to the clay soil layer ranges from 21 to 78 cm (n = 279) with a mean sediment thickness of 39 cm. The annual sediment deposition rate since human settlement in the 1860s was calculated to be 0.26 cm year−1. The results provided science-based data to support future wetland restoration planning and the development of decision support tools that prioritize conservation delivery efforts. Conclusions Our research confirmed that the EMI technique is effective and efficient at determining the depth to the Bt horizon for playa wetlands. Additionally, these results supported previous studies and continue to indicate that a large amount of sediment has accrued in these playa wetlands within the Rainwater Basin area since settlement.Wetland restoration ecologists can use this information to prioritize future wetland restoration work that intends to remove culturally accumulated sediments above the clay soil layer. These findings provided a contemporary summary of wetland soil profile information that is typically used to develop restoration plans. This research also filled the critical knowledge gap about the thickness of the upper soils and the depth to Bt in publicly managed wetlands

    An application review of dielectric electroactive polymer actuators in acoustics and vibration control

    Full text link
    Recent years have seen an increasing interest in the dielectric electroactive polymers (DEAPs) and their potential in actuator applications due to the large strain capabilities. This paper starts with an overview of some configurations of the DEAP actuators and follows with an in-depth literature and technical review of recent advances in the field with special considerations given to aspects pertaining to acoustics and vibration control. Significant research has shown that these smart actuators are promising replacement for many conventional actuators. The paper has been written with reference to a large number of published papers listed in the reference section

    Establishment of Cre-mediated HBV recombinant cccDNA (rcccDNA) cell line for cccDNA biology and antiviral screening assays

    Get PDF
    Hepatitis B virus (HBV) covalently closed circular DNA (cccDNA), existing in hepatocyte nuclei as a stable minichromosome, plays a central role in the life cycle of the virus and permits the persistence of infection. Despite being essential for HBV infection, little is known about the molecular mechanisms of cccDNA formation, regulation and degradation, and there is no therapeutic agents directly targeting cccDNA, fore mostly due to the lack of robust, reliable and quantifiable HBV cccDNA models. In this study, combined the Cre/loxP and sleeping beauty transposons system, we established HepG2-derived cell lines integrated with 2-60 copies of monomeric HBV genome flanked by loxP sites (HepG2-HBV/loxP). After Cre expression via adenoviral transduction, 3.3-kb recombinant cccDNA (rcccDNA) bearing a chimeric intron can be produced in the nuclei of these HepG2-HBV/loxP cells. The rcccDNA could be accurately quantified by quantitative PCR using specific primers and cccDNA pool generated in this model could be easily detected by Southern blotting using the digoxigenin probe system. We demonstrated that the rcccDNA was epigenetically organized as the natural minichromosome and served as the template supporting pgRNA transcription and viral replication. As the expression of HBV S antigen (HBsAg) is dependent on the newly generated cccDNA, HBsAg is the surrogate marker of cccDNA. Additionally, the efficacies of 3 classes of anti-HBV agents were evaluated in HepG2-HBV/loxP cells and antiviral activities with different mechanisms were confirmed. These data collectively suggested that HepG2-HBV/loxP cell system will be powerful platform for studying cccDNA related biological mechanisms and developing novel cccDNA targeting drugs.</p

    MicroRNA-939 restricts Hepatitis B virus by targeting Jmjd3-mediated and C/EBPα-coordinated chromatin remodeling

    Get PDF
    Multi-layered mechanisms of virus host interaction exist for chronic hepatitis B virus (HBV) infection, which have been typically manifested at the microRNA level. Our previous study suggested that miRNA-939 (miR-939) may play a potential role in regulating HBV replication. Here we further investigated the mechanism by which miR-939 regulates HBV life cycle. We found that miR-939 inhibited the abundance of viral RNAs without direct miRNA-mRNA base pairing, but via host factors. Expression profiling and functional validation identified Jmjd3 as a target responsible for miR-939 induced anti-HBV effect. Jmjd3 appeared to enhance the transcription efficiency of HBV enhancer II/core promoter (En II) in a C/EBPα-dependent manner. However, the demethylase activity of Jmjd3 was not required in this process. Rather, Jmjd3's transactivation activity depended on its interaction with C/EBPα. This coordinated action further recruited the Brm containing SWI/SNF chromatin remodeling complex which promoted the transcription of HBV RNAs. Taken together, we propose that the miR-939-Jmjd3 axis perturbs the accessibility of En II promoter to essential nuclear factors (C/EBPα and SWI/SNF complex) therefore leading to compromised viral RNA synthesis and hence restricted viral multiplication.</p

    Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells.

    Get PDF
    Manipulation of grain boundaries in polycrystalline perovskite is an essential consideration for both the optoelectronic properties and environmental stability of solar cells as the solution-processing of perovskite films inevitably introduces many defects at grain boundaries. Though small molecule-based additives have proven to be effective defect passivating agents, their high volatility and diffusivity cannot render perovskite films robust enough against harsh environments. Here we suggest design rules for effective molecules by considering their molecular structure. From these, we introduce a strategy to form macromolecular intermediate phases using long chain polymers, which leads to the formation of a polymer-perovskite composite cross-linker. The cross-linker functions to bridge the perovskite grains, minimizing grain-to-grain electrical decoupling and yielding excellent environmental stability against moisture, light, and heat, which has not been attainable with small molecule defect passivating agents. Consequently, all photovoltaic parameters are significantly enhanced in the solar cells and the devices also show excellent stability

    An infectious clone of enterovirus 71(EV71) that is capable of infecting neonatal immune competent mice without adaptive mutations

    Get PDF
    Enterovirus 71 (EV71) is a major pathogen that causes hand, foot and mouth disease (HFMD), which is a life threatening disease in certain children. The pathogenesis of EV71-caused HFMD is poorly defined due to the lack of simple and robust animal models with severe phenotypes that recapitulate symptoms observed in humans. Here, we generated the infectious clone of a clinical isolate from a severe HFMD patient. Virus rescued from the cDNA clone was infectious in cell lines. When administrated intraperitoneally to neonatal ICR, BALB/c and C57 immune competent mice at a dosage of1.4 × 104 pfu per mouse, the virus caused weight loss, paralysis and death in the infected mice after 4-5 days of infection. In the infected mice, detectable viral replication was detected in various tissues such as heart, liver, brain, lung, kidney, small intestine, leg skeletal muscle and medulla oblongata. The histology of the infected mice included massive myolysis, glomerular atrophy, villous blunting in small intestine, widened alveolar septum, diminished alveolar spaces and lymphocytes infiltration into the lung. By using the UV-inactivated virus as a control, we elucidated that the virus first amplified in the leg skeletal muscle tissue and the muscle tissue served as a primary viral replication site. In summary, we generated a stable EV71 infectious clone that is capable of infecting neonatal immune competent mice without adaptive mutations and provide a simple, valuable animal model for the studies of EV71pathogenesis and therapy.</p

    An integrated software for virus community sequencing data analysis

    Get PDF
    BACKGROUND: A virus community is the spectrum of viral strains populating an infected host, which plays a key role in pathogenesis and therapy response in viral infectious diseases. However automatic and dedicated pipeline for interpreting virus community sequencing data has not been developed yet.RESULTS: We developed Quasispecies Analysis Package (QAP), an integrated software platform to address the problems associated with making biological interpretations from massive viral population sequencing data. QAP provides quantitative insight into virus ecology by first introducing the definition "virus OTU" and supports a wide range of viral community analyses and results visualizations. Various forms of QAP were developed in consideration of broader users, including a command line, a graphical user interface and a web server. Utilities of QAP were thoroughly evaluated with high-throughput sequencing data from hepatitis B virus, hepatitis C virus, influenza virus and human immunodeficiency virus, and the results showed highly accurate viral quasispecies characteristics related to biological phenotypes.CONCLUSIONS: QAP provides a complete solution for virus community high throughput sequencing data analysis, and it would facilitate the easy analysis of virus quasispecies in clinical applications.</p

    Lipid–calcium phosphate nanoparticles for delivery to the lymphatic system and SPECT/CT imaging of lymph node metastases

    Get PDF
    A lipid/calcium/phosphate (LCP) nanoparticle (NP) formulation (particle diameter ~25 nm) with superior siRNA delivery efficiency was developed and reported previously. Here, we describe the successful formulation of 111In into LCP for SPECT/CT imaging. Imaging and biodistribution studies showed that, polyethylene glycol grafted 111In-LCP preferentially accumulated in the lymph nodes at ~70% ID/g in both C57BL/6 and nude mice when the improved surface coating method was used. Both the liver and spleen accumulated only ~25% ID/g. Larger LCP (diameter ~67 nm) was less lymphotropic. These results indicate that 25 nm LCP was able to penetrate into tissues, enter the lymphatic system, and accumulate in the lymph nodes via lymphatic drainage due to 1) small size, 2) a well-PEGylated lipid surface, and 3) a slightly negative surface charge. The capability of intravenously injected 111In-LCP to visualize an enlarged, tumor-loaded sentinel lymph node was demonstrated using a 4T1 breast cancer lymph node metastasis model. Systemic gene delivery to the lymph nodes after IV injection was demonstrated by the expression of red fluorescent protein cDNA. The potential of using LCP for lymphatic drug delivery is discussed
    • …
    corecore