154 research outputs found

    Source-independent quantum random number generation

    Full text link
    Quantum random number generators can provide genuine randomness by appealing to the fundamental principles of quantum mechanics. In general, a physical generator contains two parts---a randomness source and its readout. The source is essential to the quality of the resulting random numbers; hence, it needs to be carefully calibrated and modeled to achieve information-theoretical provable randomness. However, in practice, the source is a complicated physical system, such as a light source or an atomic ensemble, and any deviations in the real-life implementation from the theoretical model may affect the randomness of the output. To close this gap, we propose a source-independent scheme for quantum random number generation in which output randomness can be certified, even when the source is uncharacterized and untrusted. In our randomness analysis, we make no assumptions about the dimension of the source. For instance, multiphoton emissions are allowed in optical implementations. Our analysis takes into account the finite-key effect with the composable security definition. In the limit of large data size, the length of the input random seed is exponentially small compared to that of the output random bit. In addition, by modifying a quantum key distribution system, we experimentally demonstrate our scheme and achieve a randomness generation rate of over 5×1035\times 10^3 bit/s.Comment: 11 pages, 7 figure

    Unified framework for quantumness -- coherence, discord, and entanglement

    Full text link
    From an operational perspective, quantumness characterizes the exotic behavior in a physical process which cannot be explained with Newtonian physics. There are several widely used measures of quantumness, including coherence, discord, and entanglement, each proven to be essential resources in particular situations. There exists evidence of fundamental connections amongst the three measures. However, those quantumnesses are still regarded differently and such connections are yet to be elucidated. Here, we introduce a general framework of defining a unified quantumness with an operational motivation founded on the capability of interferometry. The quantumness appears differently as coherence, discord, and entanglement in different scenarios with local measurement, weak reference frame free measurement, and strong reference frame free measurement, respectively. Our results also elaborate how these three measures are related and how they can be transformed from each other. This framework can be further extended to other scenarios and serves as a universal quantumness measure.Comment: 9 pages, 4 figure

    Exploring Partial Knowledge Base Inference in Biomedical Entity Linking

    Full text link
    Biomedical entity linking (EL) consists of named entity recognition (NER) and named entity disambiguation (NED). EL models are trained on corpora labeled by a predefined KB. However, it is a common scenario that only entities within a subset of the KB are precious to stakeholders. We name this scenario partial knowledge base inference: training an EL model with one KB and inferring on the part of it without further training. In this work, we give a detailed definition and evaluation procedures for this practically valuable but significantly understudied scenario and evaluate methods from three representative EL paradigms. We construct partial KB inference benchmarks and witness a catastrophic degradation in EL performance due to dramatically precision drop. Our findings reveal these EL paradigms can not correctly handle unlinkable mentions (NIL), so they are not robust to partial KB inference. We also propose two simple-and-effective redemption methods to combat the NIL issue with little computational overhead. Codes are released at https://github.com/Yuanhy1997/PartialKB-EL.Comment: Accepted by ACL-BioNLP 2023. The first two authors are contributed equall

    EHRDiff: Exploring Realistic EHR Synthesis with Diffusion Models

    Full text link
    Electronic health records (EHR) contain vast biomedical knowledge and are rich resources for developing precise medicine systems. However, due to privacy concerns, there are limited high-quality EHR data accessible to researchers hence hindering the advancement of methodologies. Recent research has explored using generative modelling methods to synthesize realistic EHR data, and most proposed methods are based on the generative adversarial network (GAN) and its variants for EHR synthesis. Although GAN-style methods achieved state-of-the-art performance in generating high-quality EHR data, such methods are hard to train and prone to mode collapse. Diffusion models are recently proposed generative modelling methods and set cutting-edge performance in image generation. The performance of diffusion models in realistic EHR synthesis is rarely explored. In this work, we explore whether the superior performance of diffusion models can translate to the domain of EHR synthesis and propose a novel EHR synthesis method named EHRDiff. Through comprehensive experiments, EHRDiff achieves new state-of-the-art performance for the quality of synthetic EHR data and can better protect private information in real training EHRs in the meanwhile.Comment: Working in progres

    How well do Large Language Models perform in Arithmetic tasks?

    Full text link
    Large language models have emerged abilities including chain-of-thought to answer math word problems step by step. Solving math word problems not only requires abilities to disassemble problems via chain-of-thought but also needs to calculate arithmetic expressions correctly for each step. To the best of our knowledge, there is no work to focus on evaluating the arithmetic ability of large language models. In this work, we propose an arithmetic dataset MATH 401 to test the latest large language models including GPT-4, ChatGPT, InstrctGPT, Galactica, and LLaMA with various arithmetic expressions and provide a detailed analysis of the ability of large language models. MATH 401 and evaluation codes are released at \url{https://github.com/GanjinZero/math401-llm}

    Speculative Contrastive Decoding

    Full text link
    Large language models (LLMs) have shown extraordinary performance in various language tasks, but high computational requirements hinder their widespread deployment. Speculative decoding, which uses amateur models to predict the generation of expert models, has been proposed as a way to accelerate LLM inference. However, speculative decoding focuses on acceleration instead of making the best use of the token distribution from amateur models. We proposed Speculative Contrastive Decoding (SCD), an accelerated decoding method leveraging the natural contrast between expert and amateur models in speculative decoding. Comprehensive evaluations on four benchmarks show that SCD can achieve similar acceleration factors as speculative decoding while further improving the generation quality as the contrastive decoding. The analysis of token probabilities further demonstrates the compatibility between speculative and contrastive decoding. Overall, SCD provides an effective approach to enhance the decoding quality of LLMs while saving computational resources.Comment: Working in Progres

    A New Dataset and Method for Creativity Assessment Using the Alternate Uses Task

    Get PDF
    Creativity ratings by humans for the alternate uses task (AUT) tend to be subjective and inefficient. To automate the scoring process of the AUT, previous literature suggested using semantic distance from non-contextual models. In this paper, we extend this line of research by including contextual semantic models and more importantly, exploring the feasibility of predicting creativity ratings with supervised discriminative machine learning models. Based on a newly collected dataset, our results show that supervised models can successfully classify between creative and non-creative responses even with unbalanced data, and can generalise well to out-of-domain unseen prompts

    RRHF: Rank Responses to Align Language Models with Human Feedback without tears

    Full text link
    Reinforcement Learning from Human Feedback (RLHF) facilitates the alignment of large language models with human preferences, significantly enhancing the quality of interactions between humans and these models. InstructGPT implements RLHF through several stages, including Supervised Fine-Tuning (SFT), reward model training, and Proximal Policy Optimization (PPO). PPO, however, is sensitive to hyperparameters and requires a minimum of four models in its standard implementation, which makes it hard to train. In contrast, we propose a novel learning paradigm called RRHF, which scores responses generated by different sampling policies and learns to align them with human preferences through ranking loss. RRHF can efficiently align language model output probabilities with human preferences as robust as fine-tuning and it only needs 1 to 2 models during tuning. In addition, RRHF can be considered an extension of SFT and reward models while being simpler than PPO in terms of coding, model counts, and hyperparameters. The entire alignment process can be accomplished within a single RRHF training session. We evaluate RRHF using LLaMA and Alpaca on Helpful and Harmless data, demonstrating performance comparable to PPO.Comment: Codes available at https://github.com/GanjinZero/RRH
    • …
    corecore