172 research outputs found
Observation of Non-Exponential Orbital Electron Capture Decays of Hydrogen-Like Pr and Pm Ions
We report on time-modulated two-body weak decays observed in the orbital
electron capture of hydrogen-like Pr and Pm
ions coasting in an ion storage ring. Using non-destructive single ion,
time-resolved Schottky mass spectrometry we found that the expected exponential
decay is modulated in time with a modulation period of about 7 seconds for both
systems. Tentatively this observation is attributed to the coherent
superposition of finite mass eigenstates of the electron neutrinos from the
weak decay into a two-body final state.Comment: 12 pages, 5 figure
Direct Observation of Long-Lived Isomers in 212 Bi
Long-lived isomers in Bi212 have been studied following U238 projectile fragmentation at 670 MeV per nucleon. The fragmentation products were injected as highly charged ions into a storage ring, giving access to masses and half-lives. While the excitation energy of the first isomer of Bi212 was confirmed, the second isomer was observed at 1478(30) keV, in contrast to the previously accepted value of >1910 keV. It was also found to have an extended Lorentz-corrected in-ring half-life >30 min, compared to 7.0(3) min for the neutral atom. Both the energy and half-life differences can be understood as being due a substantial, though previously unrecognized, internal decay branch for neutral atoms. Earlier shell-model calculations are now found to give good agreement with the isomer excitation energy. Furthermore, these and new calculations predict the existence of states at slightly higher energy that could facilitate isomer deexcitation studies. � 2013 American Physical Society
Mass measurements of neutron-deficient Y, Zr, and Nb isotopes and their impact on rp and νp nucleosynthesis processes
© 2018 The Authors. Published by Elsevier B.V. This manuscript is made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0). For further details please see: https://creativecommons.org/licenses/by-nc-nd/4.0/Using isochronous mass spectrometry at the experimental storage ring CSRe in Lanzhou, the masses of 82Zr and 84Nb were measured for the first time with an uncertainty of ∼10 keV, and the masses of 79Y, 81Zr, and 83Nb were re-determined with a higher precision. The latter are significantly less bound than their literature values. Our new and accurate masses remove the irregularities of the mass surface in this region of the nuclear chart. Our results do not support the predicted island of pronounced low α separation energies for neutron-deficient Mo and Tc isotopes, making the formation of Zr–Nb cycle in the rp-process unlikely. The new proton separation energy of 83Nb was determined to be 490(400) keV smaller than that in the Atomic Mass Evaluation 2012. This partly removes the overproduction of the p-nucleus 84Sr relative to the neutron-deficient molybdenum isotopes in the previous νp-process simulations.Peer reviewe
Increased isomeric lifetime of hydrogen-like Os-192m
An excited metastable nuclear state of 192 Os in a hydrogen-like charge state has been studied for the first time. It was populated in projectile fragmentation of a 197Au beam on a 9Be target with the UNILAC-SIS accelerators at GSI. Fragmentation products in the region of interest were passed through the fragment separator and injected into the experimental storage ring (ESR). Cooling of the injected beam particles enabled Schottky mass spectrometry to be performed. Analysis shows the lifetime of the state to be considerably longer than that of the neutral ion [τneut=8.5(14) s]; this change is attributed to hindrance of internal conversion in hydrogen-like 192Os. Calculations have been performed to estimate the lifetime, and the result has been compared with that measured experimentally. There is good agreement between the expected [τH−like=13.0(24)s] and measured lifetimes (τrest=15.1+1.5−1.3s) from the internal decay of 192mOs. This provides a test for the reliability of the values obtained from internal conversion coefficient calculations in highly ionized systems and is the first measurement of its kind to be performed using the ESR setup
Technique for Resolving Low-lying Isomers in the Experimental Storage Ring (ESR) and the Occurrence of an Isomeric State in 192Re
A recent experiment using projectile fragmentation of a 197Au beam on a 9Be target, combined with the fragment recoil separator and experimental storage ring at ring at GSI, has uncovered an isomeric state in 192Re at 267(10) keV with a half-life of ∼6
Discovery and Cross-Section Measurement of Neutron-Rich Isotopes in the Element Range from Neodymium to Platinum at the FRS
With a new detector setup and the high-resolution performance of the fragment
separator FRS at GSI we discovered 57 new isotopes in the atomic number range
of 60: \nuc{159-161}{Nb}, \nuc{160-163}{Pm}, \nuc{163-166}Sm,
\nuc{167-168}{Eu}, \nuc{167-171}{Gd}, \nuc{169-171}{Tb}, \nuc{171-174}{Dy},
\nuc{173-176}{Ho}, \nuc{176-178}{Er}, \nuc{178-181}{Tm}, \nuc{183-185}{Yb},
\nuc{187-188}{Lu}, \nuc{191}{Hf}, \nuc{193-194}{Ta}, \nuc{196-197}{W},
\nuc{199-200}{Re}, \nuc{201-203}{Os}, \nuc{204-205}{Ir} and \nuc{206-209}{Pt}.
The new isotopes have been unambiguously identified in reactions with a
U beam impinging on a Be target at 1 GeV/u. The isotopic production
cross-section for the new isotopes have been measured and compared with
predictions of different model calculations. In general, the ABRABLA and COFRA
models agree better than a factor of two with the new data, whereas the
semiempirical EPAX model deviates much more. Projectile fragmentation is the
dominant reaction creating the new isotopes, whereas fission contributes
significantly only up to about the element holmium.Comment: 9 pages, 4 figure
Beta decay of the axially asymmetric ground state of 192Re
The β decay of 75192Re117, which lies near the boundary between the regions of predicted prolate and oblate deformations, has been investigated using the KEK Isotope Separation System (KISS) in RIKEN Nishina Center. This is the first case in which a low-energy beam of rhenium isotope has been successfully extracted from an argon gas-stopping cell using a laser-ionization technique, following production via multi-nucleon transfer between heavy ions. The ground state of 192Re has been assigned Jπ=(0−) based on the observed β feedings and deduced logft values towards the 0+ and 2+ states in 192Os, which is known as a typical γ-soft nucleus. The shape transition from axial symmetry to axial asymmetry in the Re isotopes is discussed from the viewpoint of single-particle structure using the nuclear Skyrme-Hartree-Fock model
Determination of luminosity for in-ring reactions:A new approach for the low-energy domain
Luminosity is a measure of the colliding frequency between beam and target
and it is a crucial parameter for the measurement of absolute values, such as
reaction cross sections. In this paper, we make use of experimental data from
the ESR storage ring to demonstrate that the luminosity can be precisely
determined by modelling the measured Rutherford scattering distribution. The
obtained results are in good agreement with an independent measurement based on
the x-ray normalization method. Our new method provides an alternative way to
precisely measure the luminosity in low-energy stored-beam configurations. This
can be of great value in particular in dedicated low-energy storage rings where
established methods are difficult or impossible to apply.Comment: 8 pages, 5 figure
- …