107 research outputs found

    Superconductivity of a Metallic Stripe Embedded in an Antiferromagnet

    Full text link
    We study a simple model for the metallic stripes found in La1.6xNd0.4SrxCuO4La_{1.6-x}Nd_{0.4}Sr_xCuO_4: two chain Hubbard ladder embedded in a static antiferromagnetic environments. We consider two cases: a ``topological stripe'', for which the phase of the Neel order parameter shifts by π\pi across the ladder, and a ``non-topological stripe'', for which there is no phase shift across the ladder. We perform one-loop renormalization group calculations to determine the low energy properties. We compare the results with those of the isolated ladder and show that for small doping superconductivity is enhanced in the topological stripe, and suppressed in the non-topological one. In the topological stripe, the superconducting order parameter is a mixture of a spin singlet component with zero momentum and a spin triplet component with momentum π\pi. We argue that this mixture is generic, and is due to the presence of a new term in the quantum Ginzburg-Landau action. Some consequences of this mixing are discussed.Comment: 6 pages, 3 eps figure

    Comparative legal analysis of health systems in the Russian Federation and Switzerland

    Get PDF
    This article is devoted to a comparative legal analysis of healthcare systems in Russia and in Switzerland. The fundamental differences are identified. The legal nature of the healthcare system, the implementation of state control in the field of healthcare in the Russian Federation and in Switzerland, as well as promising directions for overcoming them are reveale

    Electronic Properties of Armchair Carbon Nanotubes : Bosonization Approach

    Full text link
    The phase Hamiltonian of armchair carbon nanotubes at half-filling and away from it is derived from the microscopic lattice model by taking the long range Coulomb interaction into account. We investigate the low energy properties of the system using the renormalization group method. At half-filling, the ground state is a Mott insulator with spin gap, in which the bound states of electrons at different atomic sublattices are formed. The difference from the recent results [Phys. Rev. Lett. 79, 5082 (1997)] away half-filling is clarified.Comment: 4 pages, 1 figure, Revte

    Latin American experience in constitutional and legal guarantees of freedom of the media

    Get PDF
    The objective of the research was to analyze the Latin American experience in constitutional guarantees regarding freedom of expression in the media. The document summarizes the results of a comparative legal study dedicated to the texts included in the constitutions of the Latin American states regarding the identification of norms that guarantee the freedom of the media in them. It has been established that most of the declared constitutions contain traditional guarantees of media freedom expressed in the legalization of this substantive freedom, its implementation without censorship and restrictions under the threat of responsibility for its abus

    Low Energy Properties of the (n,n) Carbon Nanotubes

    Full text link
    According to band theory, an ideal undoped (n,n) carbon nanotube is metallic. We show that the electron-electron interaction causes it to become Mott insulating with a spin gap. More interestingly, upon doping it develops superconducting fluctuations.Comment: 5pages, 2eps figures, one reference added, final version, accepted to PR

    Universality of electron correlations in conducting carbon nanotubes

    Full text link
    Effective low-energy Hamiltonian of interacting electrons in conducting single-wall carbon nanotubes with arbitrary chirality is derived from the microscopic lattice model. The parameters of the Hamiltonian show very weak dependence on the chiral angle, which makes the low energy properties of conducting chiral nanotubes universal. The strongest Mott-like electron instability at half filling is investigated within the self-consistent harmonic approximation. The energy gaps occur in all modes of elementary excitations and estimate at 0.010.10.01-0.1 eV.Comment: 4 pages, 2 figure

    Predicting a Gapless Spin-1 Neutral Collective Mode branch for Graphite

    Full text link
    Using the standard tight binding model of 2d graphite with short range electron repulsion, we find a gapless spin-1, neutral collective mode branch {\em below the particle-hole continuum} with energy vanishing linearly with momenta at the Γ\Gamma and KK points in the BZ. This spin-1 mode has a wide energy dispersion, 0 to 2eV\sim 2 eV and is not Landau damped. The `Dirac cone spectrum' of electrons at the chemical potential of graphite generates our collective mode; so we call this `spin-1 zero sound' of the `Dirac sea'. Epithermal neutron scattering experiments, where graphite single crystals are often used as analyzers (an opportunity for `self-analysis'!), and spin polarized electron energy loss spectroscopy (SPEELS) can be used to confirm and study our collective mode.Comment: 4 pages of LaTex file, 3 eps figure file

    Signatures of Stripe Phases in Hole Doped La2NiO4La_2NiO_4

    Full text link
    We study nickelate-centered and oxygen-centered stripe phases in doped La2_{2}NiO4_{4} materials. We use an inhomogeneous Hartree-Fock and random-phase approximation approach including both electron-electron and electron-lattice(e-l) coupling for a layer of La2_{2}NiO4_{4}. We find that whether the ground state after commensurate hole doping comprises Ni-centered or O-centered charge-localized stripes depends sensitively on the e-l interaction. With increasing e-l interaction strength, a continuous transition from an O-centered stripe phase to a Ni-centered one is found. Various low- and high-energy signatures of these two kinds of stripe phases are predicted, which can clearly distinguish them. These signatures reflect the strongly correlated spin-charge-lattice features in the vicinity of Ni-centered or O-centered stripe domains. The importance of e-l interaction for recent experiments on stripe phases is discussed.Comment: 11 pages, 12 figures, to appear in Phys.Rev.B(July 1,1998
    corecore