7,913 research outputs found

    Perspective-aware Convolution for Monocular 3D Object Detection

    Full text link
    Monocular 3D object detection is a crucial and challenging task for autonomous driving vehicle, while it uses only a single camera image to infer 3D objects in the scene. To address the difficulty of predicting depth using only pictorial clue, we propose a novel perspective-aware convolutional layer that captures long-range dependencies in images. By enforcing convolutional kernels to extract features along the depth axis of every image pixel, we incorporates perspective information into network architecture. We integrate our perspective-aware convolutional layer into a 3D object detector and demonstrate improved performance on the KITTI3D dataset, achieving a 23.9\% average precision in the easy benchmark. These results underscore the importance of modeling scene clues for accurate depth inference and highlight the benefits of incorporating scene structure in network design. Our perspective-aware convolutional layer has the potential to enhance object detection accuracy by providing more precise and context-aware feature extraction

    Panoptic-Depth Color Map for Combination of Depth and Image Segmentation

    Full text link
    Image segmentation and depth estimation are crucial tasks in computer vision, especially in autonomous driving scenarios. Although these tasks are typically addressed separately, we propose an innovative approach to combine them in our novel deep learning network, Panoptic-DepthLab. By incorporating an additional depth estimation branch into the segmentation network, it can predict the depth of each instance segment. Evaluating on Cityscape dataset, we demonstrate the effectiveness of our method in achieving high-quality segmentation results with depth and visualize it with a color map. Our proposed method demonstrates a new possibility of combining different tasks and networks to generate a more comprehensive image recognition result to facilitate the safety of autonomous driving vehicles

    Quantum heat diode versus light emission in circuit quantum electrodynamical system

    Full text link
    Precisely controlling heat transfer in a quantum mechanical system is particularly significant for designing quantum thermodynamical devices. With the technology of experiment advances, circuit quantum electrodynamics (circuit QED) has become a promising system due to controllable light matter interactions as well as flexible coupling strengths. In this paper, we design a thermal diode in terms of the two-photon Rabi model of the circuit QED system. We find that the thermal diode can not only be realized in the resonant coupling but also achieve better performance, especially for the detuned qubit-photon ultrastrong coupling. We also study the photonic detection rates and their nonreciprocity, which indicates similar behaviors with the nonreciprocal heat transport. This provides the potential to understand thermal diode behavior from the quantum optical perspective and could shed new insight into the relevant research on thermodynamical devices.Comment: 12 pages, 12 figures. To appear in Physical Review

    DeepSketch2Face: A Deep Learning Based Sketching System for 3D Face and Caricature Modeling

    Get PDF
    Face modeling has been paid much attention in the field of visual computing. There exist many scenarios, including cartoon characters, avatars for social media, 3D face caricatures as well as face-related art and design, where low-cost interactive face modeling is a popular approach especially among amateur users. In this paper, we propose a deep learning based sketching system for 3D face and caricature modeling. This system has a labor-efficient sketching interface, that allows the user to draw freehand imprecise yet expressive 2D lines representing the contours of facial features. A novel CNN based deep regression network is designed for inferring 3D face models from 2D sketches. Our network fuses both CNN and shape based features of the input sketch, and has two independent branches of fully connected layers generating independent subsets of coefficients for a bilinear face representation. Our system also supports gesture based interactions for users to further manipulate initial face models. Both user studies and numerical results indicate that our sketching system can help users create face models quickly and effectively. A significantly expanded face database with diverse identities, expressions and levels of exaggeration is constructed to promote further research and evaluation of face modeling techniques.Comment: 12 pages, 16 figures, to appear in SIGGRAPH 201
    • …
    corecore