29 research outputs found

    Long-term exposure to hypoxia inhibits tumor progression of lung cancer in rats and mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypoxia has been identified as a major negative factor for tumor progression in clinical observations and in animal studies. However, the precise role of hypoxia in tumor progression has not been fully explained. In this study, we extensively investigated the effect of long-term exposure to hypoxia on tumor progression <it>in vivo.</it></p> <p>Methods</p> <p>Rats bearing transplanted tumors consisting of A549 human lung cancer cells (lung cancer tumor) were exposed to hypoxia for different durations and different levels of oxygen. The tumor growth and metastasis were evaluated. We also treated A549 lung cancer cells (A549 cells) with chronic hypoxia and then implanted the hypoxia-pretreated cancer cells into mice. The effect of exposure to hypoxia on metastasis of Lewis lung carcinoma in mice was also investigated.</p> <p>Results</p> <p>We found that long-term exposure to hypoxia a) significantly inhibited lung cancer tumor growth in xenograft and orthotopic models in rats, b) significantly reduced lymphatic metastasis of the lung cancer in rats and decreased lung metastasis of Lewis lung carcinoma in mice, c) reduced lung cancer cell proliferation and cell cycle progression <it>in vitro</it>, d) decreased growth of the tumors from hypoxia-pretreated A549 cells, e) decreased Na<sup>+</sup>-K<sup>+ </sup>ATPase α1 expression in hypoxic lung cancer tumors, and f) increased expression of hypoxia inducible factors (HIF1α and HIF2α) but decreased microvessel density in the lung cancer tumors. In contrast to lung cancer, the growth of tumor from HCT116 human colon cancer cells (colon cancer tumor) was a) significantly enhanced in the same hypoxia conditions, accompanied by b) no significant change in expression of Na<sup>+</sup>-K<sup>+ </sup>ATPase α1, c) increased HIF1α expression (no HIF2α was detected) and d) increased microvessel density in the tumor tissues.</p> <p>Conclusions</p> <p>This study demonstrated that long-term exposure to hypoxia repressed tumor progression of the lung cancer from A549 cells and that decreased expression of Na<sup>+</sup>-K<sup>+ </sup>ATPase was involved in hypoxic inhibition of tumor progression. The results from this study provide new insights into the role of hypoxia in tumor progression and therapeutic strategies for cancer treatment.</p

    Deficiency of the NHE1 Gene Prevents Hypoxia-induced Pulmonary Hypertension and Vascular Remodeling

    No full text
    Rationale: Our previous studies found that Na+/H+ exchanger (NHE) activity played an essential role in pulmonary artery smooth muscle cell (PASMC) proliferation and in the development of hypoxia-induced pulmonary hypertension and vascular remodeling. Other investigators recently observed increased expression of the NHE isoform 1 (NHE1) gene in rodents with pulmonary hypertension induced by hypoxia. However, a causal role for the NHE1 gene in pulmonary hypertension has not been determined

    Heparin Inhibits Pulmonary Artery Smooth Muscle Cell Proliferation through Guanine Nucleotide Exchange Factor–H1/RhoA/Rho Kinase/p27

    No full text
    Ras homolog gene family member A (RhoA) through Rho kinase kinase (ROCK), one of its downstream effectors, regulates a wide range of cell physiological functions, including vascular smooth muscle cell (SMC) proliferation, by degrading cyclin-dependent kinase inhibitor, p27. Our previous studies found that heparin inhibition of pulmonary artery SMC (PASMC) proliferation and pulmonary hypertension was dependent on p27 up-regulation. To investigate whether ROCK, a regulator of p27, is involved in regulation of heparin inhibition of PASMC proliferation, we analyzed ROCK expression in the lungs from mice and from human PASMCs exposed to hypoxia, and investigated the effect of ROCK expression in vitro by RhoA cDNA transfection. We also investigated the effect of guanine nucleotide exchange factor (GEF)–H1, an upstream regulator of RhoA, on heparin inhibition of PASMC proliferation by GEF-H1 cDNA transfection. We found that: (1) hypoxia increased ROCK expression in mice and PASMCs; (2) overexpression of RhoA diminished the inhibitory effect of heparin on PASMC proliferation and down-regulated p27 expression; and (3) overexpression of GEF-H1 negated heparin inhibition of PASMC proliferation, which was accompanied by increased GTP-RhoA and decreased p27. This study demonstrates that the RhoA/ROCK pathway plays an important role in heparin inhibition on PASMC proliferation, and reveals that heparin inhibits PASMC proliferation through GEF-H1/RhoA/ROCK/p27 signaling pathway, by down-regulating GEF-H1, RhoA, and ROCK, and then up-regulating p27

    Cyclin-Dependent Kinase Inhibitor p27 Kip1

    No full text

    Effect of carboxyl-reduced heparin on the growth inhibition of bovine pulmonary artery smooth muscle cells

    No full text
    Heparin (HP) inhibits the proliferation of bovine pulmonary artery smooth muscle cells (BPASMC's), among other cell types in vitro. In order to develop a potential therapeutic agent to reverse vascular remodeling, we are involved in deciphering the relationship between the native HP structure and its antiproliferative potency. We have previously reported the influence of the molecular size and the effects of various O-sulfo and N-acetyl groups of HP on growth-inhibitory activity. In this study, to understand the influence of carboxyl groups in the HP structure required for endogenous activity, a chemically modified derivative of native HP was prepared by converting the carboxyl groups of hexuronic acid residues in HP to primary hydroxyl groups. This modification procedure involves the treatment of HP with N-(3-dimethylaminopropyl)-N-ethylcarbodiimide followed by reduction with NaBH4 to yield carboxyl-reduced heparin (CR-HP). When compared to the antiproliferative potency of native HP on cultured BPASMC's at three dose levels (1, 10, and 100 ÎŒg/mL), the CR-HP showed significantly less potency at all the doses. These results suggest that hexuronic acid residues in both major and variable sequences in HP are essential for the antiproliferative properties of native HP
    corecore