68 research outputs found

    Inhibition of autophagy by 3-MA enhances IL-24-induced apoptosis in human oral squamous cell carcinoma cells

    Full text link
    Abstract Background Interleukin-24(IL-24), also referred to as melanoma differentiation-associated gene-7(mda-7), is a unique member of the IL-10 gene family, which displays nearly ubiquitous cancer-specific toxicity. The most notable feature of IL-24 is selectively induced growth suppression and apoptosis in various cancer cells, with no harmful effects toward normal cells. Autophagy is a self-protective mechanism in many kinds of tumor cells that respond to anticancer treatment. It is reported that autophagy inhibition could enhance the effects of many kinds of anticancer treatments, including gene therapy. However, whether IL-24 is effective to treat oral squamous cell carcinomas (OSCC) and if autophagy inhibition could improve the anticancer effect of IL-24 towards OSCC is has not been detected. Methods MTT assays were carried out to determine the cell proliferation; Transfection was used to gene transfer; Western Blot was performed to detect the protein level of LC3II, P62, Beclin 1, Cleaved caspase-3, β-Tubulin and β-actin; Apoptosis rates and cell cycle alteration were analyzed using flow cytometry; Autophagy induction was confirmed by MDC staining, GFP-LC3 staining and transmission electron microscopy. Amount of IL-24 in the culture medium was quantified by ELISA. Apoptosis in vivo was analyzed by TUNEL assay. HE staining was used to observe the morphology of the samples. Results In the present study, we proved that IL-24 have a novel anticancer effect towards KB cells and that autophagy inhibition could improve the anticancer effect of IL-24. IL-24 treated cells showed autophagy characteristics and autophagy inhibition by 3-methyladenine (3-MA) significantly enhanced IL-24-induced apoptosis. Similar results were obtained in the KB cells xenograft tumor model. Conclusions These results suggest that the combination of autophagy inhibitors and IL-24 based on the AdLTR2EF1α-mediated gene transfer could be a promising way to cure OSCC.http://deepblue.lib.umich.edu/bitstream/2027.42/113230/1/13046_2015_Article_211.pd

    Thermal entanglement in three-qubit Heisenberg models

    Get PDF
    We study pairwise thermal entanglement in three-qubit Heisenberg models and obtain analytic expressions for the concurrence. We find that thermal entanglement is absent from both the antiferromagnetic XXZXXZ model, and the ferromagnetic XXZXXZ model with anisotropy parameter Δ≥1\Delta\ge 1. Conditions for the existence of thermal entanglement are discussed in detail, as is the role of degeneracy and the effects of magnetic fields on thermal entanglement and the quantum phase transition. Specifically, we find that the magnetic field can induce entanglement in the antiferromagnetic XXXXXX model, but cannot induce entanglement in the ferromagnetic XXXXXX model.Comment: 9 pages, 6 figures, minor revisions, resubmitted to J. Phys.

    ET-1 Promotes Differentiation of Periodontal Ligament Stem Cells into Osteoblasts through ETR, MAPK, and Wnt/β-Catenin Signaling Pathways under Inflammatory Microenvironment

    No full text
    Periodontitis is a kind of chronic inflammatory disease that affects the tooth-supporting tissues. ET-1 is related to periodontitis and involved in the regulation of cytokines, but the mechanisms remain unclear. The aim of this study is to investigate how ET-1 affects proinflammatory cytokine expression and differentiation in human periodontal ligament stem cells (PDLSCs). PDLSCs were isolated from the periodontal ligament tissues of periodontitis patients and then treated with ET-1 (1, 10, or 100 nM) for 12 h, 24 h, or 72 h. The osteogenic potential of PDLSCs was tested using ALP staining. TNF-α, IL-1β, and IL-6 levels were evaluated by ELISA and western blot. Runx2, OCN, and COL1 mRNA and western levels were detected by RT-PCR and western blot, respectively. To examine the signaling pathways and molecular mechanisms involved in ET-1-mediated cytokine expression and osteogenic differentiation, ETR pathway, MAPKs pathway, Wnt/β-catenin pathway, and Wnt/Ca2+ pathway were detected by RT-PCR and western blot, respectively. ET-1 promoted differentiation of PDLSCs into osteoblasts by increasing secretion of TNF-α, IL-1β, and IL-6 in a dose- and time-dependent manner. ET-1 also increased expression of Runx2, OCN, and COL1. ET-1 promotes differentiation of PDLSCs into osteoblasts through ETR, MAPK, and Wnt/β-catenin signaling pathways under inflammatory microenvironment

    All-Optical OFDM Demultiplexer Based on an Integrated Silicon-on-Insulator Technique

    No full text

    Composition and Distribution Characteristics and Geochemical Significance of n-Alkanes in Core Sediments in the Northern Part of the South Yellow Sea

    No full text
    The South Yellow Sea is an important carbon sink and a significant research area of carbon cycle. After studying the composition and distribution of n-alkanes in a 250 cm long sediment core in the northern part of South Yellow Sea, it can be found that all n-alkanes of sediment samples in this research are distributed in three types, that is, double peak groups, predominance of long-chain n-alkanes, and predominance of short-chain n-alkanes. The average values of ∑C25−35/∑C15−21, ∑C27+29+31/∑C15+17+19, ∑C21-/∑C22+, and (C27+C29+C31+C33)/∑C14–38 are 1.92, 4.22, 0.51, and 0.35, respectively; all above outcomes indicate significant predominance of terrigenous inputs. The average values of C31/C29 and ACL are 1.04 and 29.92, respectively; these results reflect that herbaceous plants and ligneous plants account for similar percentages in the sediment core samples. The average values of CPI1 of short-chain alkanes are 0.80, reflecting the apparent even predominance, which is the result of microbial degradation. The average values of CPI2 of long-chain alkanes of most samples are 2.77, reflecting the apparent odd predominance. The average values of CPI and Pr/Ph, as well as the Pr/nC17 and Ph/nC18 correlation diagram, reflect that the organic matter is immature and suggest reductive sedimentary environment

    A Hybrid Battery Wireless Charger for Self-Adapting Battery Charging Curve and Anti-Misalignment

    No full text
    The battery is mostly adopted as the load in current wireless charge applications. The wireless charger should provide configurable constant current (CC) and constant voltage (CV) outputs for the batteries. The implementation of configurable CC and CV outputs mostly rely on the additional dc–dc converter, hybrid topology, or high-order networks, resulting in complex control and poor reliability. Moreover, the battery wireless charger should also have anti-misalignment ability. To attack the above problems, a hybrid battery wireless charger is proposed for self-adapting battery charging curve and antimisalignment. A double-solenoid quadrature coupler (DSQC) consisting of square quadrature coil and double-solenoid coil is designed, which combines the coupler with clamp circuit to switch between the two coils automatically, ensuring that the output voltage has small fluctuation within a large lateral misalignment range and inherent CC-to-CV output. The control means is relatively simple, the output threshold is not limited by the parameters of DSQC. Eventually, an experimental prototype with 100 V/4.1A output is built to verify the correctness of the proposed scheme

    Mechanical properties of multi-recycled aggregate concrete under combined compression and shear

    No full text
    The mechanical properties and strength failure criteria of natural aggregate concrete and multi-recycled aggregate concrete (multi-RAC) under combined compression and shear loading states are investigated in this study. The peak shear strength, peak shear displacement, and failure patterns are compared under different regeneration cycles and normal compressive stress ratios. The results reveal that both the peak shear strength and peak shear displacement increase with the increased normal stress ratio. The shear failure pattern with higher severity corresponds to more spalling powder and debris deposited on the shear fracture surface. When the regeneration cycles of coarse aggregate increase, the peak shear strength decreases and the descending trend become more evident with the higher vertical compressive stress ratio, whereas the peak shear displacement significantly fluctuates, regardless of the regeneration cycles and normal compressive stress ratios. Under the normal compressive stress, contact friction strength is the dominant component of peak shear strength in terms of cohesive strength, contact friction strength, and shear dilation strength. Based on different stress expressions, three compression-shear failure criterion models considering the regeneration cycles of coarse aggregate under planar stress state were established for RAC. The stress invariance failure criterion model and octahedral stress failure criterion model in quadratic parabolic functional forms can provide the high prediction accuracies.This is a manuscript of an article published as Lei, Bin, Hongchen Yu, Yipu Guo, Hanbing Zhao, Kejin Wang, and Wengui Li. "Mechanical properties of multi-recycled aggregate concrete under combined compression and shear." Engineering Failure Analysis 143, Part A (2023): 106910. DOI: 10.1016/j.engfailanal.2022.106910. Copyright 2022 Elsevier Ltd. Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0). Posted with permission
    • …
    corecore