7,016 research outputs found

    Plasmon-Driven Acceleration in a Photo-Excited Nanotube

    Full text link
    A plasmon-assisted channeling acceleration can be realized with a large channel, possibly at the nanometer scale. Carbon nanotubes (CNTs) are the most typical example of nano-channels that can confine a large number of channeled particles in a photon-plasmon coupling condition. This paper presents a theoretical and numerical study on the concept of high-field charge acceleration driven by photo-excited Luttinger-liquid plasmons (LLP) in a nanotube. An analytic description of the plasmon-assisted laser acceleration is detailed with practical acceleration parameters, in particular with specifications of a typical tabletop femtosecond laser system. The maximally achievable acceleration gradients and energy gains within dephasing lengths and CNT lengths are discussed with respect to laser-incident angles and CNT-filling ratios.Comment: 19 p

    Microencapsulation of imidazole curing agent by solvent evaporation method using W/O/W emulsion

    Full text link
    The epoxy–imidazole resin system is used to form the anisotropic conducting film. The latent character of the system is very significant. In this study, imidazole (Im) or 2‐methylimidazole (2MI) was encapsulated for the latent curing system to use in the reaction of epoxy resin. Polycaprolactone was used as a wall material, and the solvent evaporation method was used to form the microcapsule using W/O/W emulsion. The shelf life of the microcapsules was studied for the epoxy resin, and the curing behavior of the microcapsules for epoxy resin was examined using a differential scanning calorimeter. The curing times at 150 and 180°C were estimated using an indentation method. The microcapsules of Im or 2MI exhibited a long shelf life for epoxy resin. When comparing the results of the previous methods with the results of this study using the W/O/W emulsion, finer microcapsules were formed and the microcapsule has longer shelf life. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98341/1/38767_ftp.pd

    PBG-SLAB EMBEDDED TRAVELING WAVE STRUCTURE FOR PLANAR BEAM ACCELERATOR APPLICATION *

    Get PDF
    Abstract The oversized traveling wave (TE 10 -mode) channel integrated with the photonic-band-gap (PBG) slab arrays have been investigated for planar beam accelerator application. Simulation analysis showed that the slab arrays allow only the PBG-modes (5 ~ 6 GHz) to propagate with ~ 2 dB of insertion loss, corresponding to ~ 1.14 dB/cm attenuation, which thereby effectively suppresses trapped non-PBG modes down to ~ -14.3 dB/cm. It will enable monochromatic propagation of fundamental acceleration modes along the heavily overmoded planar waveguide without anomalous excitation of unstable trapped HOMs. The saturated maximum field gradients of the accelerating structure have been analyzed with respect to operational frequency bands corresponding to structural sizes. The field gradient of the guided PBG-mode has been investigated with finiteintegral-method (FIM) simulations at W-band. The quasioptical mode-selective traveling wave structure can efficiently mitigate a beam-breakup problem as lowering the beam-loading with increase of transverse geometrical aspect ratio. This mode-filter could be utilized for HOM dampers in high aspect ratio (HAR) planar beam accelerators. An experimental test is currently under consideration
    • 

    corecore