4 research outputs found
(68(4):274-292)The Development and Application of CRISPR/Cas9 Genome Editing Platform
全球暖化導致極端氣候,造成全球性作物減產及糧食危機,因應氣候變遷之逆境抗性品種的快速選育來確保糧食安全,已是刻不容緩的研究議題。現今作物品種改良,是藉由回交或雜交將帶有逆境抗性基因導入現行優良品種,但因遠緣雜交育種之障礙及種原遺傳多樣性的喪失,而限制育種的廣度及進程。Cluster regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) 基因編輯技術系統自確立可應用在真核生物以來,受到學術界、研發單位、產業界與政府相關單位的重視。此技術相較於之前的基因編輯方法,不僅操作簡化且所需經費亦相對便宜,更重要的是能精準且有效編輯目標基因,使其不論在動物、植物或者人類疾病治療等皆有廣泛性的應用。在植物育種方面,由於CRISPR/Cas9 系統能準確編輯目標基因,對於植物性狀變異的掌控或者功能性基因的探索上,無疑可跳脫現有技術限制,而成為新興的育種工具。爰此,本篇主要在回顧整理基因編輯技術歷程、CRISPR/Cas9 系統的原理發展與應用,冀以提供國內學者或分子育種專家參考。
Extreme weather caused by global warming could lead to increase of crop diseases, reduction of crop yield and food crisis. It is a top research priority to improve plant stress tolerance for the adaptation of weather extremes and food security. Plant breeding has been devised for improving crop varieties by backcross or hybridization. However, the limitation of distant hybridization and loss of genetic diversity make the breeding program difficult, and the selection of crop improvement through conventional plant breeding is inefficient and unpredictable. Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) as a powerful gene editing tool has received a great degree of attention since its establishment on eukaryote. Compared with the previous gene editing technology, the CRISPR-Cas9 system is an easy to use and low-cost requirement tool. More importantly, the efficiency and accuracy of CRISPR/Cas9 system on target gene editing makes it as a widely used tool in animal, plant and human. CRISPR/Cas9 as a revolutionary plant breeding tool can facilitate precision crop improvement by controlling the gene function accurately. To provide a concept for follow-up researcher or breeding experts, we review the history of CRISPR/Cas9 system and its genome-editing mechanism. We also describe the current progress and the potential application for crop improvement
Investigation of Cdk5-dependent p21 Localization in MCF-7 Breast Cancer Cell
細胞週期主要分為四個時期,分別為G1、S、G2與M (mitosis) 期,每一時期由不同的Cdk與cyclin調控。在哺乳動物細胞中,Cdk家族主要參與細胞週期的是Cdk1 (Cdc2)、Cdk2、Cdk4和Cdk6。Cdk5因其序列與Cdk1和Cdk2具有高度相似性,且在催化區 (catalytic subunit) 區域與Cdk家族一起被歸類於CMGC (containing CDK, MAPK, GSK3, CLK families) kinase中,因此將Cdk5歸於Cdk家族中的一員,然而Cdk5對於細胞週期的調控到目前為止仍不明確,且在部分研究指出Cdk5對於細胞週期是不具有調控的機制。細胞週期除了正向調控的Cdk與cyclin外,亦有我們所熟知的負向調控因子cyclin-dependent kinase inhibitor (CKI),根據CKI的初級胺基酸結構與抑制特定Cdk的專一性可將之歸為兩大類,分別是INK4 (Inhibitors of Cdk4) 與Cip/Kip (Cdk interacting protein/Kinase inhibitory protein) 家族。Cip/Kip家族中的p21,其負向影響細胞週期主要藉由影響Cdk和cyclin E、D和A的鍵結與抑制Cdk活性。近年來,多篇研究指出p21經過不同激酶的磷酸化轉錄後修飾,不僅影響p21本身的穩定度,亦促使p21正向調控細胞週期的功能。本研究目的在於探討Cdk5是否可能經由影響p21而調控細胞生長。結果顯示乳癌細胞MCF-7中內生性的Cdk5與p21之間有生化交互作用。在細胞內蛋白核質分離實驗,顯示內生性p21會受到Cdk5抑制劑處理而增加在細胞核的分布,並在過度表現外源Cdk5或p35而減少在細胞核的分布。進一步利用表現外源GFP-p21融合蛋白,以免疫螢光方式觀測在過度表現外源Cdk5或p35蛋白下GFP-p21在胞器內的分布,結果顯示Cdk5或p35蛋白都會使GFP-p21傾向座落在細胞質,因此推測Cdk5活性對於p21在細胞內分布調控佔有相當的角色。此外,為了研究Cdk5對於細胞週期是否具有調控功能,藉由建立Cdk5穩定細胞株並檢測其細胞週期,觀察到在64小時內的不同時間點血清再處理 (serum add-back),相較於控制組細胞株,Cdk5穩定細胞株的細胞週期運行有較快的情形。在多篇文獻指出p21座落在細胞質對於細胞週期有正向調控功能,且本實驗觀察到過度表現Cdk5可促使p21分布在細胞質,加上Cdk5穩定細胞株實驗中發現Cdk5對於細胞週期有促進的效果,因此Cdk5是否藉由影響p21在胞器的分布來達到間接調控細胞週期需要更進一步探討。而這些訊息調控的基礎研究,冀望能提供基礎及臨床醫學新的致癌機轉,並在未來能開發相關藥物應用於臨床治療。Cell cycle control is primarily regulated by the members of cyclin-dependent kinase family with their specific cyclins. Cyclin-dependent kinase 5 (Cdk5) was identified as a member of Cdk family because of the sequence homology. However, the activator of Cdk5 is not the traditional cyclins but the p35 or p39. In addition, the role of Cdk5 in cell cycle regulation is currently ambiguous. The sequential Cdks activation and inactivation control the progression of entire cell cycle. The cyclin-dependent kinase inhibitors (CKIs), classified into the CIP/KIP and INK4 family, provide one of the mechanisms for Cdks inactivation. p21, a member of CIP/KIP family, inactivates Cdks by interfering the protein interaction between Cdks and cyclins. Besides, the interaction of Cdk5 and p21 was also reported. Interestingly, recent literatures indicated that cytoplasmic p21 could positively regulate cell cycle and play anti-apoptotic function in opposition to its nuclear functions. Therefore, our purpose is to investigate if Cdk5 could regulate the p21 localization and its biological function in cell cycle. At first, the endogenous protein interaction in MCF-7 between Cdk5 and p21 was identified by immunoprecipitation. The nuclear p21 was increased by the dose-dependent treatments of Cdk5 inhibitor (roscovitine) and decreased by overexpression of Cdk5 or p35. Furthermore, we found that p21-GFP fusion protein was accumulated in cytoplasm after overexpression of Cdk5 or p35 with serum add-back. According to these results, Cdk5 might play a vital role in regulating the cytoplasmic and nuclear distribution of p21. In order to determine the role of Cdk5/p21 in cell cycle regulation, MCF-7 stable cell lines were established. We found that stable overexpression of Cdk5 promoted the cell cycle process when cells reenter cell cycle after serum add-back. Base on current results, we hypothesize that subcellular localization of p21 protein might be regulated by Cdk5 and the cell cycle process was therefore promoted.目次
中文摘要…………………………………………………………………………….. i
英文摘要…………………………………………………………………………….. ii
目次………………………………………………………………………………….. iii
圖表目次…………………………………………………………………………...... v
第一章、 前言……………………………………………………………………….. 1
一、 背景……………………………………………………………………….. 1
(一) Cyclin-dependent kinase (Cdk) 與cyclin在細胞週期的調控…....... 1
(二) Cdk抑制因子 (CKI, cyclin-dependent kinase inhibitor)…………… 3
(三) Cdk5與Cdk家族成員………………………………………………. 4
(四) Cdk5對於細胞存活與死亡的調控…………………………………. 7
(五) p21磷酸化與座落在細胞質的影響………………………………... 9
二、 研究動機及目的………………………………………………………….. 11
第二章、 材料與方法……………………………………………………………… 14
一、 細胞培養 (cell culture) ………………………………………………….. 14
二、 細胞冷凍保存 (cryopreservation) ………………………………………. 15
三、 細胞增殖分析法 (MTT assay) ………………………………………….. 16
四、 細胞生長曲線測定 (growth curve) ……………………………………... 16
五、 細胞週期分析 (Cell cycle analysis) …………………………………….. 16
(一)、酒精固定法…………………………………………………………. 16
(二)、Propidium iodide (PI) 染色………………………………………… 16
六、 蛋白質定量與定性分析………………………………………………….. 17
(一)、蛋白質萃取 (protein extraction) …………………………………... 17
(二)、蛋白質濃度測定 (Bradford assay) ………………………………... 17
(三)、聚丙烯醯胺膠體電泳 (SDS-polyacrylamide gel electrophoresis) ... 17
(四)、西方墨點法 (immunoblotting) …………………………………….. 18
七、 細胞核質蛋白分離 (protein fractionation) ……………………………... 18
八、 質體DNA轉染技術 (plasmid DNA transfection) ……………………… 19
九、 穩定細胞株建立 (stable cell line) ………………………………………. 19
十、 蛋白質免疫沉澱 (immunoprecipitation, IP) ……………………………. 20
十一、 蛋白質免疫螢光染色 (immunofluorescence stain) ………………….. 20
十二、 表現載體之構築 (DNA Construction) ……………………………….. 21
(一)、目標片段的增幅……………………………………………………. 21
(二)、洋菜凝膠電泳 (agarose gel electrophoresis) ……………………… 22
(三)、限制酶反應 (restriction digestion) 與膠體回收 (gel extraction) ... 22
(四)、目標片段與載體接合反應 (ligation) ……………………………... 22
(五)、勝任細胞 (competent cell) 製備與轉形作用 (transformation) ….. 22
(六)、小量質體DNA抽取 (minipreparation of plasmid DNA) 與DNA
定序…………………………………………………………………..
23
十三、 一級抗體 (primary antibody) ………………………………………… 23
十四、 二級抗體 (secondary antibody) ………………………………………. 24
十五、 菌種 (E. coli strains) ………………………………………………….. 24
十六、 質體 (plasmid) ………………………………………………………... 24
十七、 統計分析 (statistics) ………………………………………………….. 24
第三章、 結果……………………………………………………………………….. 25
一、 癌細胞株蛋白質表現…………………………………………………….. 25
二、 Cdk5與p21於MCF-7細胞株的生化交互作用…………………………. 25
三、 Cdk5活性抑制劑 (roscovitine) 對於細胞株增殖的影響……………… 26
四、 Cdk5活性抑制劑 (roscovitine) 對於p21穩定度與細胞核質分布的
影響………………………………………………………………………
26
五、 過度表現Cdk5或p35外源蛋白質對內生性p21的影響……………….. 27
六、 過度表現Cdk5或p35外源蛋白質對融合蛋白GFP-p21在胞器內分
布的影響…………………………………………………………………
27
七、 穩定細胞株蛋白質表現與細胞外型…………………………………….. 28
八、 穩定細胞株的生長曲線………………………………………………….. 29
九、 穩定細胞株的細胞週期分析…………………………………………….. 30
十、 臨床檢體蛋白質表現量比較…………………………………………….. 31
十一、 臨床檢體切片染色…………………………………………………….. 31
第四章、 討論……………………………………………………………………….. 33
一、 Cdk5與p21之間的交互作用……………………………………………. 33
二、 p21在臨床上的指標……………………………………………………... 34
三、 p21磷酸化與在細胞核質分布影響……………………………………... 34
四、 Cdk5對於p21在細胞內的可能調控路徑………………………………. 35
五、 Cdk5與細胞週期………………………………………………………… 37
第五章、 總結 38
第六章、 參考文獻 58
圖表目次
附圖
附圖一、 各種Cdk、cyclin與CKI在細胞週期的調控角色 ..…………………….. 2
附圖二、 Cip/Kip家族p21、p27及p57結構示意圖……………………………...... 3
附圖三、 外來傷害啟動細胞內腫瘤抑制基因p53調控路徑……………………... 4
附圖四、 Cdk家族的序列親源分析樹狀圖 ..…………………………………….. 5
附圖五、 Calpain截切p35成p25導致神經細胞死亡 ...………………………….. 6
附圖六、 Cdk5對於細胞的多項調控生理功能…………………………….…....... 6
附圖七、 Cdk5對於神經細胞存活與死亡調控路徑圖…………………………… 8
附圖八、 Her2受體透過Cdk5調控STAT3轉錄活性及促進MTC甲狀腺癌細
胞的增生………………………….….………………………….….……
8
附圖九、 Cip/Kip家族對於細胞週期的正向調控………………………………. 9
附圖十、 HER-2/neu透過活化PI3K/Akt路徑調控p21在細胞質與細胞核的分
布..…………………………………………………………………………
10
附圖十一、 p21與p27座落在細胞質與細胞核的不同調控功能..……………….. 11
附圖十二、 p21對於Cdk5活性的探討……………………………………………. 33
附圖十三、 各種kinase磷酸化p21胺基酸位置示意圖…………………………... 35
附圖十四、 p21與p27部分胺基酸序列alignment .……………………………….. 36
附圖十五、Cdk5影響神經細胞週期的可能性模式圖.……………………………. 36
附表
附表一、 各種Cdk、cyclin與CKI在哺乳動物與酵母菌中的名稱與功能……….. 1
附表二、 全球致死因素排名與預測………..……………………………………… 12
附表三、 Cdk5在非神經細胞的多種調控功能..………………………………….. 13
附表四、 p21與p27與Cdk之間的結合速率常數 (association rate constant)..... 33
實驗結果
圖 1、 細胞型態與蛋白質表現量………………………………………………….. 39
圖 2、 MCF-7細胞中Cdk5與p21蛋白質之間的生化交互作用...……………….. 40
圖 3、 Roscovitine對於細胞株增殖的影響……………………………………...... 41
圖 4、 Roscovitine不同濃度下對於MCF-7細胞蛋白質表現量的影響..………... 42
圖 5、 Roscovitine不同濃度下對於MCF-7細胞外型的影響………………….. 43
圖 6、 Roscovitine 造成p21蛋白質在MCF-7細胞質與細胞核的分布改變….. 44
圖 7、過度表現Cdk5或p35外源蛋白質對於MCF-7內生性p21在細胞核質
分布的影響…………………………………………………………………..
45
圖 8、 質體pEGFP-p21示意圖…………………………..………………………… 46
圖 9、 pEGFP-p21定序後分析圖….….………………………….………………... 47
圖 10、 過度表現Cdk5對於GFP-p21融合蛋白在MCF-7細胞內分布的影響... 48
圖 11、過度表現p35對於GFP-p21融合蛋白在MCF-7細胞內分布的影響…... 49
圖 12、 MCF-7穩定細胞株各蛋白質表現量…………………….……………….. 50
圖 13、 穩定細胞株細胞型態的比較…..…..……………………………………… 51
圖 14、 MCF-7穩定細胞株生長曲線的比較…...…..…………………………….. 52
圖 15、 穩定細胞株的細胞週期分析……...………………………………………. 53
圖 16、 不同臨床分期乳癌檢體的蛋白質表現比較…………………………........ 54
圖 17、Cdk5、p35和p21在正常和腫瘤組織細胞中的位置分布比較…………... 55
圖 18、 Cdk5調控p21細胞核質分布的可能模式圖與對細胞所造成的影響.... 5
Cdk5 Directly Targets Nuclear p21CIP1 and Promotes Cancer Cell Growth
The significance of Cdk5 in cell-cycle control and cancer biology has gained increased attention. Here we report the inverse correlation between the protein levels of Cdk5 and p21CIP1 from cell-based and clinical analysis. Mechanistically, we identify that Cdk5 overexpression triggers the proteasome-dependent degradation of p21CIP1 through a S130 phosphorylation in a Cdk2-independent manner. Besides, the evidence from cell-based and clinical analysis shows that Cdk5 primarily regulates nuclear p21CIP1 protein degradation. S130A-p21CIP1 mutant enables to block either its protein degradation or the increase of cancer cell growth caused by Cdk5. Notably, Cdk5-triggered p21CIP1 targeting primarily appears in S-phase, while Cdk5 overexpression increases the activation of Cdk2 and its interaction with DNA polymerase δ. The in vivo results show that Cdk2 might play an important role in the downstream signaling to Cdk5. In summary, these findings suggest that Cdk5 in a high expression status promotes cancer growth by directly and rapidly releasing p21CIP1-dependent cell-cycle inhibition and subsequent Cdk2 activation, which illustrates an oncogenic role of Cdk5 potentially applied for future diagnosis and therapy. Cancer Res; 76(23); 6888-900. ©2016 AACR