84 research outputs found

    Analysis of the Antioxidative Function of the Radioprotective Japanese Traditional (Kampo) Medicine, Hangeshashinto, in an Aqueous Phase

    Get PDF
    Oral mucositis (OM) is a common and painful complication of radiotherapy for head and neck cancer. Hangeshashinto (HST), a Japanese traditional medicine, is known to alleviate radiotherapy and/or chemotherapy-induced OM; however, the detailed mechanism has not yet been clarified. The aim of the present study is to clarify the details of the antioxidative functions of HST against reactive oxygen species (ROS) produced by radiation. The hydroxyl radical (•OH) scavenging ability and reduction ability was simultaneously measured using a modified electron paramagnetic resonance (EPR) spin trapping method. The superoxide (O2•−) scavenging ability was estimated by an EPR redox probing method. Water suspension of powdered HST and its seven constitutive crude drugs were tested. In addition, some of the main water soluble ingredients of the crude drugs were also tested. HST was found to scavenge both •OH and O2•−. Furthermore, HST was observed to reduce relatively stable nitroxyl radicals. Glycyrrhizae Radix (kanzo), Ginseng Radix (ninjin), Zizyphi Fructus (taiso), and glycyrrhizin (an ingredient of kanzo) were all found to be relatively good •OH scavengers. Scutellariae Radix (ogon) and Coptidis Rhizoma (oren) demonstrated reducing ability. In addition, acteoside and berberine chloride, which are water soluble ingredients of ogon and oren, respectively, also demonstrated reducing ability. Oren exhibited oxidative ability at higher concentrations, which may have a function to maintain catalytic redox action. The antioxidative function of HST probably worked in a balance of scavenging ROS, reducing stable free radicals and some minor oxidative effects

    Keishibukuryogan, a Traditional Japanese Medicine, Inhibits Platelet Aggregation in Guinea Pig Whole Blood

    Get PDF
    Effects of keishibukuryogan (KBG) on platelet aggregation were investigated. To ensure the specificity of KBG, tokishakuyakusan (TSS) and kamisyoyosan (KSS), which are known to have platelet aggregation-inhibiting effects, and rikkunshito (RKT) and shakuyakukanzoto (SKT), which are considered to be devoid of such effects, were used for comparison. The platelet aggregation of each test drug was measured by the screen filtration pressure method using whole blood of guinea pigs and expressed as a collagen-induced pressure rate (%) or a collagen concentration required for 50% increase in the pressure rate (PATI value). KBG suppressed the collagen-induced whole blood pressure rate increase and increased the PATI value, like TSS and KSS. Neither RKT nor SKT showed these effects. The Moutan cortex and Cinnamomi cortex, the constituent crude drugs of KBG, showed KBG-like pressure rate suppression and PATI-increasing effects. Furthermore, paeonol, a representative component of Moutan cortex, and aspirin which is known to have platelet aggregation-inhibiting activity (COX-1 inhibitor) also showed similar effects. These results suggest that the platelet aggregation-inhibiting activity of the constituent crude drugs Moutan cortex and Cinnamomi cortex is involved in the improving effects of KBG on impaired microcirculation and that paeonol plays a role in these effects

    Time-, Sex-, and Dose-Dependent Alterations of the Gut Microbiota by Consumption of Dietary Daikenchuto (TU-100)

    Get PDF
    Medications or dietary components can affect both the host and the host’s gut microbiota. Changes in the microbiota may influence medication efficacy and interactions. Daikenchuto (TU-100), a herbal medication, comprised of ginger, ginseng, and Japanese pepper, is widely used in Japanese traditional Kampo medicine for intestinal motility and postoperative paralytic ileus. We previously showed in mice that consumption of TU-100 for 4 weeks changed the gut microbiota and increased bioavailability of bacterial ginsenoside metabolites. Since TU-100 is prescribed in humans for months to years, we examined the time- and sex-dependent effects of TU-100 on mouse gut microbiota. Oral administration of 1.5% TU-100 for 24 weeks caused more pronounced changes in gut microbiota in female than in male mice. Changes in both sexes largely reverted to baseline upon TU-100 withdrawal. Effects were time and dose dependent. The microbial profiles reverted to baseline within 4 weeks after withdrawal of 0.75% TU-100 but were sustained after withdrawal of 3% TU-100. In summary, dietary TU-100 changed mouse microbiota in a time-, sex-, and dose-dependent manner. These findings may be taken into consideration when determining optimizing dose for conditions of human health and disease with the consideration of differences in composition and response of the human intestinal microbiota

    Deconstructing the traditional Japanese medicine “Kampo”: compounds, metabolites and pharmacological profile of maoto, a remedy for flu-like symptoms

    Get PDF
    Pharmacological activities of the traditional Japanese herbal medicine (Kampo) are putatively mediated by complex interactions between multiple herbal compounds and host factors, which are difficult to characterize via the reductive approach of purifying major bioactive compounds and elucidating their mechanisms by conventional pharmacology. Here, we performed comprehensive compound, pharmacological and metabolomic analyses of maoto, a pharmaceutical-grade Kampo prescribed for flu-like symptoms, in normal and polyI:C-injected rats, the latter suffering from acute inflammation via Toll-like receptor 3 activation. In total, 352 chemical composition-determined compounds (CCDs) were detected in maoto extract by mass spectrometric analysis. After maoto treatment, 113 CCDs were newly detected in rat plasma. Of these CCDs, 19 were present in maoto extract, while 94 were presumed to be metabolites generated from maoto compounds or endogenous substances such as phospholipids. At the phenotypic level, maoto ameliorated the polyI:C-induced decrease in locomotor activity and body weight; however, body weight was not affected by individual maoto components in isolation. In accordance with symptom relief, maoto suppressed TNF-α and IL-1β, increased IL-10, and altered endogenous metabolites related to sympathetic activation and energy expenditure. Furthermore, maoto decreased inflammatory prostaglandins and leukotrienes, and increased anti-inflammatory eicosapentaenoic acid and hydroxyl-eicosapentaenoic acids, suggesting that it has differential effects on eicosanoid metabolic pathways involving cyclooxygenases, lipoxygenases and cytochrome P450s. Collectively, these data indicate that extensive profiling of compounds, metabolites and pharmacological phenotypes is essential for elucidating the mechanisms of herbal medicines, whose vast array of constituents induce a wide range of changes in xenobiotic and endogenous metabolism

    Keishibukuryogan is not carcinogenic in Sprague-Dawley rats

    No full text

    Antiallodynic Effect of Herbal Medicine Yokukansan on Peripheral Neuropathy in Rats with Chronic Constriction Injury

    Get PDF
    Yokukansan, one of the traditional Japanese herbal medicines, ameliorated neuropathic pain symptoms in patients. In this study, we investigated the effects of yokukansan on neuropathic pain in chronic constriction injury (CCI) model. Oral administration of yokukansan significantly inhibited mechanical and cold allodynia in the von Frey hair or acetone test, respectively. In comparison, amitriptyline, a tricyclic antidepressant, demonstrated moderate, but not significant, antiallodynic effects in the mechanical and cold tests. Yokukansan significantly inhibited the cerebrospinal fluid dialysate level of glutamate that had increased by the stimulation of brush or acetone. Glutamate transporter inhibitors, DL-threo-beta-hydroxy aspartate and dihydrokainate, decreased the yokukansan-induced antiallodynic actions in CCI rats. Our results suggest that yokukansan was confirmed to have antiallodynic effects in CCI rats, which are related to a blockade of glutamatergic neurotransmission via activation of glutamate transporters in the spinal cord

    Specific binding and characteristics of 18β-glycyrrhetinic acid in rat brain.

    No full text
    18β-Glycyrrhetinic acid (GA) is the aglycone of glycyrrhizin that is a component of Glycyrrhiza, and has several pharmacological actions in the central nervous system. Recently, GA has been demonstrated to reach the brain by crossing the blood-brain barrier in rats after oral administration of a Glycyrrhiza-containing traditional Japanese medicine, yokukansan. These findings suggest that there are specific binding sites for GA in the brain. Here we show evidence that [3H]GA binds specifically to several brain areas by quantitative autoradiography; the density was higher in the hippocampus, moderate in the caudate putamen, nucleus accumbens, amygdala, olfactory bulb, cerebral cortex, thalamus, and mid brain, and lower in the brain stem and cerebellum. Several kinds of steroids, gap junction-blocking reagents, glutamate transporter-recognized compounds, and glutamate receptor agonists did not inhibit the [3H]GA binding. Microautoradiography showed that the [3H]GA signals in the hippocampus were distributed in small non-neuronal cells similar to astrocytes. Immunohistochemical analysis revealed that immunoreactivity of 11β-hydroxysteroid dehydrogenase type-1 (11β-HSD1), a defined molecule recognized by GA, was detected mainly in neurons, moderately in astrocytes, and very slightly in microglial cells, of the hippocampus. These results demonstrate that specific binding sites for GA exist in rat brain tissue, and suggest that the pharmacological actions of GA may be related to 11β-HSD1 in astrocytes. This finding provides important information to understand the pharmacology of GA in the brain
    corecore