3,585 research outputs found

    Recent development of inorganic nanoparticles for biomedical imaging

    Get PDF
    Inorganic nanoparticle-based biomedical imaging probes have been studied extensively as a potential alternative to conventional molecular imaging probes. Not only can they provide better imaging performance but they can also offer greater versatility of multimodal, stimuli-responsive, and targeted imaging. However, inorganic nanoparticle-based probes are still far from practical use in clinics due to safety concerns and less-optimized efficiency. In this context, it would be valuable to look over the underlying issues. This outlook highlights the recent advances in the development of inorganic nanoparticle-based probes for MRI, CT, and anti-Stokes shift-based optical imaging. Various issues and possibilities regarding the construction of imaging probes are discussed, and future research directions are suggested.

    Metal/graphene sheets as p-type transparent conducting electrodes in GaN light emitting diodes

    Get PDF
    We demonstrate the use of graphene based transparent sheets as a p-type current spreading layer in GaN light emitting diodes (LEDs). Very thin Ni/Au was inserted between graphene and p-type GaN to reduce contact resistance, which reduced contact resistance from similar to 5.5 to similar to 0.6 Omega/ cm(2), with no critical optical loss. As a result, LEDs with metal-graphene provided current spreading and injection into the p-type GaN layer, enabling three times enhanced electroluminescent intensity compared with those with graphene alone. We confirmed very strong blue light emission in a large area of the metal-graphene layer by analyzing image brightness.open281

    Visible emission from Ce-doped ZnO nanorods grown by hydrothermal method without a post thermal annealing process

    Get PDF
    Visible light-emitting Ce-doped ZnO nanorods [NRs] without a post thermal annealing process were grown by hydrothermal method on a Si (100) substrate at a low temperature of 90°C. The structural investigations of Ce-doped ZnO NRs showed that the Ce3+ ions were successfully incorporated into the ZnO lattice sites without forming unwanted Ce-related compounds or precipitates. The optical investigation by photoluminescence spectra shows that the doped Ce3+ ions in the ZnO NRs act as an efficient luminescence center at 540 nm which corresponds to the optical transition of 5d → 4f orbitals in the Ce3+ ions. The photoluminescence intensity of the Ce-doped ZnO NRs increased with the increasing content of the Ce-doping agent because the energy transfer of the excited electrons in ZnO to the Ce3+ ions would be enhanced by increased Ce3+ ions

    Self-supervised Image Denoising with Downsampled Invariance Loss and Conditional Blind-Spot Network

    Full text link
    There have been many image denoisers using deep neural networks, which outperform conventional model-based methods by large margins. Recently, self-supervised methods have attracted attention because constructing a large real noise dataset for supervised training is an enormous burden. The most representative self-supervised denoisers are based on blind-spot networks, which exclude the receptive field's center pixel. However, excluding any input pixel is abandoning some information, especially when the input pixel at the corresponding output position is excluded. In addition, a standard blind-spot network fails to reduce real camera noise due to the pixel-wise correlation of noise, though it successfully removes independently distributed synthetic noise. Hence, to realize a more practical denoiser, we propose a novel self-supervised training framework that can remove real noise. For this, we derive the theoretic upper bound of a supervised loss where the network is guided by the downsampled blinded output. Also, we design a conditional blind-spot network (C-BSN), which selectively controls the blindness of the network to use the center pixel information. Furthermore, we exploit a random subsampler to decorrelate noise spatially, making the C-BSN free of visual artifacts that were often seen in downsample-based methods. Extensive experiments show that the proposed C-BSN achieves state-of-the-art performance on real-world datasets as a self-supervised denoiser and shows qualitatively pleasing results without any post-processing or refinement

    Korea’s technical assistance for better governance

    Get PDF
    노트 : - Paper for International Conference on U.S.-Korea Dialogue on Strategies for Effective Development Cooperation - Organized by Asia Foundation October 17-18, 2011 Seoul, Korea 행사명 : International Conference on U.S.-Korea Dialogue on Strategies for Effective Development Cooperatio

    Quantifying and monitoring functional Photosystem II and the stoichiometry of the two photosystems in leaf segments: Approaches and approximations

    Get PDF
    Given its unique function in light-induced water oxidation and its susceptibility to photoinactivation during photosynthesis, photosystem II (PS II) is often the focus of studies of photosynthetic structure and function, particularly in environmental stress conditions. Here we review four approaches for quantifying or monitoring PS II functionality or the stoichiometry of the two photosystems in leaf segments, scrutinizing the approximations in each approach. (1) Chlorophyll fluorescence parameters are convenient to derive, but the information-rich signal suffers from the localized nature of its detection in leaf tissue. (2) The gross O2 yield per single-turnover flash in CO2-enriched air is a more direct measurement of the functional content, assuming that each functional PS II evolves one O2 molecule after four flashes. However, the gross O2 yield per single-turnover flash (multiplied by four) could overestimate the content of functional PS II if mitochondrial respiration is lower in flash illumination than in darkness. (3) The cumulative delivery of electrons from PS II to P700? (oxidized primary donor in PS I) after a flash is added to steady background far-red light is a whole-tissue measurement, such that a single linear correlation with functional PS II applies to leaves of all plant species investigated so far. However, the magnitude obtained in a simple analysis (with the signal normalized to the maximum photo-oxidizable P700 signal), which should equal the ratio of PS II to PS I centers, was too small to match the independently-obtained photosystem stoichiometry. Further, an under-estimation of functional PS II content could occur if some electrons were intercepted before reaching PS I. (4) The electrochromic signal from leaf segments appears to reliably quantify the photosystem stoichiometry, either by progressively photoinactivating PS II or suppressing PS I via photo-oxidation of a known fraction of the P700 with steady far-red light. Together, these approaches have the potential for quantitatively probing PS II in vivo in leaf segments, with prospects for application of the latter two approaches in the field
    corecore