64 research outputs found

    A New Phase at Finite Quark Density from AdS/CFT

    Get PDF
    We explore phases of N=2 super Yang-Mills theory at finite quark density by introducing quark chemical potential in a D3-D7 setup. We formulate the thermodynamics of brane embeddings and find that we need to renormalize the finite chemical potential due to the divergence of the thermodynamic potentials and we find that the density versus chemical potential equation of state has rich structure. This yields two distinct first order phase transitions in a small window of quark density. In order words, there is a new first order phase transition in the region of deconfined quarks. In this new phase, the chemical potential is a decreasing function of the density. We suggest that this might be relevant to the difference in sQGP--wQGP phases of QCD.Comment: 4 pages, revte

    Inhomogeneous Structures in Holographic Superfluids: II. Vortices

    Full text link
    We study vortex solutions in a holographic model of Herzog, Hartnoll, and Horowitz, with a vanishing external magnetic field on the boundary, as is appropriate for vortices in a superfluid. We study relevant length scales related to the vortices and how the charge density inside the core of the vortex behaves as a function of temperature or chemical potential. We extract the critical superfluid velocity from the vortex solutions, study how it behaves as a function of the temperature, and compare it to earlier studies and to the Landau criterion. We also comment on the possibility of a Berezinskii-Kosterlitz-Thouless vortex confinement-deconfinement transition.Comment: 32 pages, 10 figures, typos corrected, references adde

    Tensor Minkowski Functionals for random fields on the sphere

    Full text link
    We generalize the translation invariant tensor-valued Minkowski Functionals which are defined on two-dimensional flat space to the unit sphere. We apply them to level sets of random fields. The contours enclosing boundaries of level sets of random fields give a spatial distribution of random smooth closed curves. We obtain analytic expressions for the ensemble expectation values for the matrix elements of the tensor-valued Minkowski Functionals for isotropic Gaussian and Rayleigh fields. We elucidate the way in which the elements of the tensor Minkowski Functionals encode information about the nature and statistical isotropy (or departure from isotropy) of the field. We then implement our method to compute the tensor-valued Minkowski Functionals numerically and demonstrate how they encode statistical anisotropy and departure from Gaussianity by applying the method to maps of the Galactic foreground emissions from the PLANCK data.Comment: 1+23 pages, 5 figures, Significantly expanded from version 1. To appear in JCA

    D-branes in 2d Lorentzian black hole

    Full text link
    We study D-branes in the Lorentzian signature 2D black hole string theory. We use the technique of gauged WZW models to construct the associated boundary conformal field theories. The main focus of this work is to discuss the (semi-classical) world-volume geometries of the D-branes. We also discuss comparison of our work with results in related gauged WZW models.Comment: 24 pages, 5 figures, uses JHEP3.cl

    Revisiting the Thermal AdS partition function

    Full text link
    We rewrite the worldsheet torus partition function of the Thermal AdS CFT by isolating the boundary parameters. Using this, we show that the spectrum of the Euclidean BTZ black hole and Lorentzian AdS3 can be extracted -- the latter as a zero temperature limit. A similar procedure recovers the Lorentzian BTZ spectrum proposed in an earlier work. We then use our expression to construct a boundary modular invariant expression as a Poincar\'e series
    corecore