46 research outputs found
Recommended from our members
ASIS&T Webinar and Discussion: The Role of Information During a Global Health Crisis - Association for Information Science and Technology
You're viewing a past blog from the Good Systems Grand Challenge team at The University of Texas at Austin about free webinars offered to discuss the current and future effects of global crisis.Office of the VP for Researc
Recommended from our members
Global health crises are also information crises: A call to action
Association for Information Science & Technology published a piece from Bo Xie and others about the Misinformation/disinformation particularly during global health crises on March 13, 2020.Office of the VP for Researc
Massive-Scale RNA-Seq Analysis of Non Ribosomal Transcriptome in Human Trisomy 21
Hybridization- and tag-based technologies have been successfully used in Down
syndrome to identify genes involved in various aspects of the pathogenesis.
However, these technologies suffer from several limits and drawbacks and, to
date, information about rare, even though relevant, RNA species such as long and
small non-coding RNAs, is completely missing. Indeed, none of published works
has still described the whole transcriptional landscape of Down syndrome.
Although the recent advances in high-throughput RNA sequencing have revealed the
complexity of transcriptomes, most of them rely on polyA enrichment protocols,
able to detect only a small fraction of total RNA content. On the opposite end,
massive-scale RNA sequencing on rRNA-depleted samples allows the survey of the
complete set of coding and non-coding RNA species, now emerging as novel
contributors to pathogenic mechanisms. Hence, in this work we analysed for the
first time the complete transcriptome of human trisomic endothelial progenitor
cells to an unprecedented level of resolution and sensitivity by RNA-sequencing.
Our analysis allowed us to detect differential expression of even low expressed
genes crucial for the pathogenesis, to disclose novel regions of active
transcription outside yet annotated loci, and to investigate a
plethora of non-polyadenilated long as well as short non coding RNAs. Novel
splice isoforms for a large subset of crucial genes, and novel extended
untranslated regions for known genes—possibly novel miRNA targets or
regulatory sites for gene transcription—were also identified in this
study. Coupling the rRNA depletion of samples, followed by high-throughput
RNA-sequencing, to the easy availability of these cells renders this approach
very feasible for transcriptome studies, offering the possibility of
investigating in-depth blood-related pathological features of Down syndrome, as
well as other genetic disorders
Impairment of circulating endothelial progenitors in Down syndrome
<p>Abstract</p> <p>Background</p> <p>Pathological angiogenesis represents a critical issue in the progression of many diseases. Down syndrome is postulated to be a systemic anti-angiogenesis disease model, possibly due to increased expression of anti-angiogenic regulators on chromosome 21. The aim of our study was to elucidate some features of circulating endothelial progenitor cells in the context of this syndrome.</p> <p>Methods</p> <p>Circulating endothelial progenitors of Down syndrome affected individuals were isolated, <it>in vitro </it>cultured and analyzed by confocal and transmission electron microscopy. ELISA was performed to measure SDF-1α plasma levels in Down syndrome and euploid individuals. Moreover, qRT-PCR was used to quantify expression levels of <it>CXCL12 </it>gene and of its receptor in progenitor cells. The functional impairment of Down progenitors was evaluated through their susceptibility to hydroperoxide-induced oxidative stress with BODIPY assay and the major vulnerability to the infection with human pathogens. The differential expression of crucial genes in Down progenitor cells was evaluated by microarray analysis.</p> <p>Results</p> <p>We detected a marked decrease of progenitors' number in young Down individuals compared to euploid, cell size increase and some major detrimental morphological changes. Moreover, Down syndrome patients also exhibited decreased SDF-1α plasma levels and their progenitors had a reduced expression of SDF-1α encoding gene and of its membrane receptor. We further demonstrated that their progenitor cells are more susceptible to hydroperoxide-induced oxidative stress and infection with Bartonella henselae. Further, we observed that most of the differentially expressed genes belong to angiogenesis, immune response and inflammation pathways, and that infected progenitors with trisomy 21 have a more pronounced perturbation of immune response genes than infected euploid cells.</p> <p>Conclusions</p> <p>Our data provide evidences for a reduced number and altered morphology of endothelial progenitor cells in Down syndrome, also showing the higher susceptibility to oxidative stress and to pathogen infection compared to euploid cells, thereby confirming the angiogenesis and immune response deficit observed in Down syndrome individuals.</p