8 research outputs found

    Viral lncRNA: A regulatory molecule for controlling virus life cycle

    No full text
    Long non-coding RNAs (lncRNAs) are found not only in mammals but also in other organisms, including viruses. Recent findings suggest that lncRNAs play various regulatory roles in multiple major biological and pathological processes. During viral life cycles, lncRNAs are involved in a series of steps, including enhancing viral gene expression, promoting viral replication and genome packaging, boosting virion release, maintaining viral latency and assisting viral transformation; additionally, lncRNAs antagonize host antiviral innate immune responses. In contrast to proteins that function in viral infection, lncRNAs are expected to be novel targets for the modulation of all types of biochemical processes due to their broad characteristics and profound influence. This review highlights our current understanding of the regulatory roles of lncRNAs during viral infection processes with an emphasis on the potential usefulness of lncRNAs as a target for viral intervention strategies, which could have therapeutic implications for the application of a clinical approach for the treatment of viral diseases. Keywords: lncRNA, Viral life cycle, Gene regulation, Viral replication, Virus interventio

    Ferric citrate for the treatment of hyperphosphatemia and iron deficiency anaemia in patients with NDD-CKD: a systematic review and meta-analysis

    No full text
    Background: The application of ferric citrate therapy has yielded unexpected benefits in recent years for Chronic kidney disease patients suffering from hyperphosphatemia and iron deficiency -anaemia. Despite this, earlier research on the impact of ferric citrate on NDD-CKD has been contentious.Objective: The goal of the meta-analysis is to evaluate the evidence regarding the advantages and dangers of ferric citrate for the treatment of hyperphosphatemia and iron deficiency anaemia in NDD-CKD patients.Methods: Between the start of the study and June 2022, we searched PubMed, Embase, Cochrane, EBSCO, Scopus, Web of Science, Wan Fang Data, CNKI, and VIP databases for randomised controlled trials of iron citrate for hyperphosphatemia and anaemia in patients with NDD-CKD. For binary categorical data, risk ratios (OR) were employed, and for continuous variables, weighted mean differences The effect sizes for both count and measurement data were expressed using 95% confidence intervalsResults: The meta-analysis includes eight trials with a total of 1281 NDD-CKD patients. The phosphorus-lowering effect of ferric citrate was greater compared to the control group (WMD, −0.55, 95% CI, −0.81 to −0.28; I2 = 86%, p < 0.001). Calcium (WMD, 0.092; 95% CI, −0.051 to 0.234; p > 0.05; I2 = 61.9%), PTH (WMD, −0.10; 95% CI, −0.44 to 0.23; I2 = 75%, p > 0.05) and iFGF23 (WMD, −7.62; 95% CI, −21.18 to 5.94; I2 = 20%, p > 0.05) levels were not statistically different after ferric citrate treatment compared to control treatment. Furthermore, ferric citrate increased iron reserves and haemoglobin. The ferric citrate group had considerably greater levels than the controls. Ferric citrate, on the other hand, may raise the risk of constipation, diarrhoea, and nausea.Conclusion: This meta-analysis found that ferric citrate had a beneficial effect in the treatment of NDD-CKD, particularly in reducing blood phosphorus levels when compared to a control intervention. It also shown that ferric citrate has a favourable effect on iron intake and anaemia management. In terms of safety, ferric citrate may increase the likelihood of gastrointestinal side effects

    The regulation of cell homeostasis and antiviral innate immunity by autophagy during classical swine fever virus infection

    No full text
    ABSTRACTCSFV (classical swine fever virus) is currently endemic in developing countries in Asia and has recently re-emerged in Japan. Under the pressure of natural selection pressure, CSFV keeps evolving to maintain its ecological niche in nature. CSFV has evolved mechanisms that induce immune depression, but its pathogenic mechanism is still unclear. In this study, using transcriptomics and metabolomics methods, we found that CSFV infection alters innate host immunity by activating the interferon pathway, inhibiting host inflammation, apoptosis, and remodelling host metabolism in porcine alveolar macrophages. Moreover, we revealed that autophagy could alter innate immunity and metabolism induced by CSFV infection. Enhanced autophagy further inhibited CSFV-induced RIG-I-IRF3 signal transduction axis and JAK-STAT signalling pathway and blocked type I interferon production while reducing autophagy inhibition of the NF-κB signalling pathway and apoptosis in CSFV infection cells. Furthermore, the level of CSFV infection-induced glycolysis and the content of lactate and pyruvate, as well as 3-phosphoglyceraldehyde, a derivative of glycolysis converted to serine, was altered by autophagy. We also found that silencing HK2 (hexokinase 2), the rate-limiting enzyme of glycolytic metabolism, could induce autophagy but reduce the interferon signalling pathway, NF-κB signalling pathway, and inhibition of apoptosis induced by CSFV infection. In addition, inhibited cellular autophagy by silencing ATG5 or using 3-Methyladenine, could backfill the inhibitory effect of silencing HK2 on the cellular interferon signalling pathway, NF-κB signalling pathway, and apoptosis

    Smart antioxidant function enhancing (SAFE) nucleic acid therapy for ROS-related chronic diseases and comorbidities

    No full text
    Reactive oxygen species (ROS)-mediated oxidative stress exacerbates chronic diseases such as organ damage and neurodegenerative disorders. The Keap1-Nrf2-ARE pathway is a widely distributed endogenous antioxidant system. However, ROS under redox homeostasis regulates a wide range of life activities. Therefore, smart scavenging of excess ROS under pathological conditions is essential to treat chronic diseases safely. This study reports a smart antioxidant function enhancement (SAFE) strategy. On-demand release of nucleic acid drugs in a pathological ROS environment smartly activates the endogenous antioxidant system, thereby smartly alleviating oxidative stress in an exogenous antioxidant-independent manner. Through structural modulation and ligand modification, we develop SAFE nanoparticles based on nanohybrid complexes (SAFE-complex) adapted to brain delivery of nucleic acid drugs. SAFE-complex with homogeneous monodisperse structure efficiently treat ROS-related neurodegenerative diseases while protecting the major organ from oxidative stress damage. Moreover, SAFE-complex can stabilize storage in the form of freeze-dried powder. These data indicate that SAFE nanoparticles hold promise for treating ROS-related chronic diseases and comorbidities through rational transformation
    corecore