789 research outputs found

    Influence of Natural Organic Matter Fouling and Osmotic Backwash on Pressure Retarded Osmosis Energy Production from Natural Salinity Gradients

    Get PDF
    Pressure retarded osmosis (PRO) has the potential to produce clean, renewable energy from natural salinity gradients. However, membrane fouling can lead to diminished water flux productivity, thus reducing the extractable energy. This study investigates organic fouling and osmotic backwash cleaning in PRO and the resulting impact on projected power generation. Fabricated thin-film composite membranes were fouled with model river water containing natural organic matter. The water permeation carried foulants from the feed river water into the membrane porous support layer and caused severe water flux decline of ∼46%. Analysis of the water flux behavior revealed three phases in membrane support layer fouling. Initial foulants of the first fouling phase quickly adsorbed at the active-support layer interface and caused a significantly greater increase in hydraulic resistance than the subsequent second and third phase foulants. The water permeability of the fouled membranes was lowered by ∼39%, causing ∼26% decrease in projected power density. A brief, chemical-free osmotic backwash was demonstrated to be effective in removing foulants from the porous support layer, achieving ∼44% recovery in projected power density. The substantial performance recovery after cleaning was attributed to the partial restoration of the membrane water permeability. This study shows that membrane fouling detrimentally impacts energy production, and highlights the potential strategies to mitigate fouling in PRO power generation with natural salinity gradients

    Current partition: Nonequilibrium Green's function Approach

    Get PDF
    We present a solution to the problem of AC current partition in a multi-probe mesoscopic conductor within the nonequilibrium Green's function formalism. This allows the derivation of dynamic conductance which is appropriate for nonequilibrium situations and which satisfies the current conservation and gauge invariance requirements. This formalism presents a significant generalization to previous theory: (i) there is no limit in the frequency, and (ii) it allows detailed treatments of interactions in the mesoscopic region. The formalism is applied to calculate dynamic conductance of tunneling structures with and without assuming wideband limit.Comment: 4 pages, 3 figure

    Long-term care cost drivers and expenditure projection to 2036 in Hong Kong

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hong Kong's rapidly ageing population, characterised by one of the longest life expectancies and the lowest fertility rate in the world, is likely to drive long-term care (LTC) expenditure higher. This study aims to identify key cost drivers and derive quantitative estimates of Hong Kong's LTC expenditure to 2036.</p> <p>Methods</p> <p>We parameterised a macro actuarial simulation with data from official demographic projections, Thematic Household Survey 2004, Hong Kong's Domestic Health Accounts and other routine data from relevant government departments, Hospital Authority and other LTC service providers. Base case results were tested against a wide range of sensitivity assumptions.</p> <p>Results</p> <p>Total projected LTC expenditure as a proportion of GDP reflected secular trends in the elderly dependency ratio, showing a shallow dip between 2004 and 2011, but thereafter yielding a monotonic rise to reach 3.0% by 2036. Demographic changes would have a larger impact than changes in unit costs on overall spending. Different sensitivity scenarios resulted in a wide range of spending estimates from 2.2% to 4.9% of GDP. The availability of informal care and the setting of formal care as well as associated unit costs were important drivers of expenditure.</p> <p>Conclusion</p> <p>The "demographic window" between the present and 2011 is critical in developing policies to cope with the anticipated burgeoning LTC burden, in concert with the related issues of health care financing and retirement planning.</p

    Assessment of dietary intake among pregnant women in a rural area of western China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adequate maternal nutrient intake during pregnancy is important to ensure satisfactory birth outcomes. There are no data available on the usual dietary intake among pregnant women in rural China. The present study describes and evaluates the dietary intake in a cohort of pregnant women living in two counties of rural Shaanxi, western China.</p> <p>Methods</p> <p>1420 pregnant women were recruited from a trial that examined the effects of micronutrient supplementation on birth outcomes. Dietary information was collected at the end of their trimester or after delivery with an interviewed-administrated semi-quantitative food frequency questionnaire (FFQ). Nutrients intake was calculated from the FFQ and compared to the Estimated Average Requirements (EAR). The EAR cut-offs based on the Chinese Nutrition Society Dietary Reference Intakes (DRIs) were used to assess the prevalence of inadequate dietary intakes of energy, protein, calcium, zinc, riboflavin, vitamin C and folate. Mann-Whitney U and Kruskal Wallis tests were used to compare nutrient intakes across subgroups.</p> <p>Results</p> <p>The mean nutrient intakes assessed by the FFQ was similar to those reported in the 2002 Chinese National Nutrition and Health Survey from women living in rural areas except for low intakes of protein, fat, iron and zinc. Of the participants, 54% were at risk of inadequate intake of energy. There were high proportions of pregnant women who did not have adequate intakes of folate (97%) and zinc (91%). Using the "probability approach", 64% of subjects had an inadequate consumption of iron.</p> <p>Conclusion</p> <p>These results reveal that the majority of pregnant women in these two counties had low intakes of nutrients that are essential for pregnancy such as iron and folate.</p> <p>Trial registration</p> <p>ISRCTN08850194.</p

    Measurement of the mass difference and the binding energy of the hypertriton and antihypertriton

    Full text link
    According to the CPT theorem, which states that the combined operation of charge conjugation, parity transformation and time reversal must be conserved, particles and their antiparticles should have the same mass and lifetime but opposite charge and magnetic moment. Here, we test CPT symmetry in a nucleus containing a strange quark, more specifically in the hypertriton. This hypernucleus is the lightest one yet discovered and consists of a proton, a neutron, and a Λ\Lambda hyperon. With data recorded by the STAR detector{\cite{TPC,HFT,TOF}} at the Relativistic Heavy Ion Collider, we measure the Λ\Lambda hyperon binding energy BΛB_{\Lambda} for the hypertriton, and find that it differs from the widely used value{\cite{B_1973}} and from predictions{\cite{2019_weak, 1995_weak, 2002_weak, 2014_weak}}, where the hypertriton is treated as a weakly bound system. Our results place stringent constraints on the hyperon-nucleon interaction{\cite{Hammer2002, STAR-antiH3L}}, and have implications for understanding neutron star interiors, where strange matter may be present{\cite{Chatterjee2016}}. A precise comparison of the masses of the hypertriton and the antihypertriton allows us to test CPT symmetry in a nucleus with strangeness for the first time, and we observe no deviation from the expected exact symmetry
    • …
    corecore